Abstract
The homeostatic neuron circuit using a double-gate MOSFET is proposed to imitate a homeostasis functionality of a biological neuron in spiking neural networks (SNN) based on a spike-timing dependent plasticity (STDP). The threshold voltage (Vth) of the double-gate MOSFET is controlled by independent two-gate biases (VG1 and VG2). By using Vth change of the double-gate MOSFET in the neuron circuits, the fire rate of the output neuron is controlled. The homeostasis functionality is implemented by the operation of multi-neuron system based on the proposed neuron circuit. Through the SNN based on STDP using MNIST datasets, it is demonstrated that the recognition rate (~91%) of the SNN with the proposed homeostasis functionality is higher than that (~79%) of the SNN without the proposed homeostasis functionality. Also, the results of the recognition rate with the variations (σ/μ < 0.5) of the synaptic devices and the initial Vth of neuron circuits show a low degradation (1 ~ 3%) in the recognition rate. Thus, it is demonstrated that the homeostasis functionality of the proposed neuron circuit has the immunity to variations (σ/μ < 0.5) of the synaptic devices and the neuron circuits in the SNN based on STDP.
Original language | English |
---|---|
Article number | 107741 |
Journal | Solid-State Electronics |
Volume | 165 |
DOIs | |
State | Published - Mar 2020 |
Keywords
- Double-gate MOSFET
- Homeostasis functionality
- Neuron circuit
- Pattern recognition
- Spiking neural networks (SNNs)