TY - GEN
T1 - Improved iterative error analysis using spectral similarity measures for vegetation classification in hyperspectral images
AU - Song, Ahram
AU - Kim, Yongil
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/31
Y1 - 2018/10/31
N2 - Iterative error analysis (IEA) is one of popular, sequential and linear constrained endmember extraction algorithm that uses spectral angle mapping (SAM) to calculate angles between spectral vectors. However, IEA has a limit that discriminating similar spectral vector is difficult because SAM does not consider positive and negative correlations. Since vegetation has similar spectral properties, it is difficult to classify different vegetation types. To improve IEA for various applications, such as crop classification and change detection, spectral similarity measures other than SAM have been applied to IEA. Many spectral similarity measures have been developed to calculate the similarities among spectral signatures and these are divided into the original methods and the newly developed hybrid algorithms. In this study, the original methods used were SAM, SCA, and SID, while the hybrid methods included SAMSID, SCASID, Jeffries-matusita measures-SAM (JMSAM), and normalized spectral similarity score (NS3). A Compact airborne spectrographic imager image including three crops and road was used and similarity values of four endmembers extracted by modified IEA were calculated. The CASI image was classified using endmembers and minimum distance classifier. The classification accuracy of the modified IEA with SMA, SCA, SID, SAMSID, SCASID, JMSAM, and NS3 were 84.45%, 85.56%, 61.47%, 65.83%, 62.11%, 93.47%, 90.29%. SID based algorithm has lower accuracy because SID tends to make two similar spectral signatures more similar. The results showed that JASAM was most effective to classify different vegetation types. The modified IEA with JMSAM could classify vegetation more effectively than the original IEA.
AB - Iterative error analysis (IEA) is one of popular, sequential and linear constrained endmember extraction algorithm that uses spectral angle mapping (SAM) to calculate angles between spectral vectors. However, IEA has a limit that discriminating similar spectral vector is difficult because SAM does not consider positive and negative correlations. Since vegetation has similar spectral properties, it is difficult to classify different vegetation types. To improve IEA for various applications, such as crop classification and change detection, spectral similarity measures other than SAM have been applied to IEA. Many spectral similarity measures have been developed to calculate the similarities among spectral signatures and these are divided into the original methods and the newly developed hybrid algorithms. In this study, the original methods used were SAM, SCA, and SID, while the hybrid methods included SAMSID, SCASID, Jeffries-matusita measures-SAM (JMSAM), and normalized spectral similarity score (NS3). A Compact airborne spectrographic imager image including three crops and road was used and similarity values of four endmembers extracted by modified IEA were calculated. The CASI image was classified using endmembers and minimum distance classifier. The classification accuracy of the modified IEA with SMA, SCA, SID, SAMSID, SCASID, JMSAM, and NS3 were 84.45%, 85.56%, 61.47%, 65.83%, 62.11%, 93.47%, 90.29%. SID based algorithm has lower accuracy because SID tends to make two similar spectral signatures more similar. The results showed that JASAM was most effective to classify different vegetation types. The modified IEA with JMSAM could classify vegetation more effectively than the original IEA.
KW - Endmember
KW - IEA
KW - Spectral similarity measures
KW - Vegetation classification
UR - http://www.scopus.com/inward/record.url?scp=85064180038&partnerID=8YFLogxK
U2 - 10.1109/IGARSS.2018.8519271
DO - 10.1109/IGARSS.2018.8519271
M3 - Conference contribution
AN - SCOPUS:85064180038
T3 - International Geoscience and Remote Sensing Symposium (IGARSS)
SP - 2662
EP - 2665
BT - 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Y2 - 22 July 2018 through 27 July 2018
ER -