Abstract
Apache Hadoop has been a popular parallel processing tool in the era of big data. While practitioners have rewritten many conventional analysis algorithms to make them customized to Hadoop, the issue of inefficient I/O in Hadoop-based programs has been repeatedly reported in the literature. In this article, we address the problem of the I/O inefficiency in Hadoop-based massive data analysis by introducing our efficient modification of Hadoop. We first incorporate a columnar data layout into the conventional Hadoop framework, without any modification of the Hadoop internals. We also provide Hadoop with indexing capability to save a huge amount of I/O while processing not only selection predicates but also star-join queries that are often used in many analysis tasks.
| Original language | English |
|---|---|
| Article number | 2682085 |
| Journal | Scientific Programming |
| Volume | 2018 |
| DOIs | |
| State | Published - 2018 |