In situ Raman and 13C NMR spectroscopic analysis of gas hydrates formed in confined water: Application to natural gas capture

Juwoon Park, Kyuchul Shin, Jong Won Lee, Huen Lee, Yutaek Seo

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

This study investigates the formation characteristics of gas hydrate from bulk water as well as dispersed water in silica gel and dry water particles when they are exposed to natural gas. The inclusion process of methane, ethane, and propane molecules in hydrate cages were observed with in situ Raman spectroscopy, and the resulting cage occupancies were estimated from 13C NMR spectra. A high-pressure autoclave was used to monitor the formation process to determine hydrate onset time, initial growth rate, and conversion ratio. The obtained data from Raman spectra and gas consumption profiles suggested that hydrate formed within less than 20 min when the temperature is sufficiently lower than the hydrate equilibrium condition at a given pressure. Methane molecules started to occupy the small cages of structure II, but about 6 min later ethane and propane were also included in hydrate cages. 13C NMR spectroscopy confirms that only 23% of large cages of structure II are occupied by methane molecules when hydrate formed from dispersed water in silica gel, which was much less than 68% from dry water. These results suggest that the dispersion of water in silica gel and dry water would enhance the formation process by increasing gas-to-water ratio, although the composition of hydrate phase may vary depending on the formation condition. However the formation of hydrate in silica gel and dry water still provide an effective option to capture the natural gas without using complex rotating machineries.

Original languageEnglish
Pages (from-to)1035-1042
Number of pages8
JournalCanadian Journal of Chemistry
Volume93
Issue number9
DOIs
StatePublished - 13 May 2015

Keywords

  • C NMR spectroscopy
  • Formation kinetics
  • Gas hydrates
  • Raman spectroscopy

Fingerprint

Dive into the research topics of 'In situ Raman and 13C NMR spectroscopic analysis of gas hydrates formed in confined water: Application to natural gas capture'. Together they form a unique fingerprint.

Cite this