Abstract
Obovatol, a major constituent of the leaves of Magnolia obovata Thunb, is known to inhibit nuclear factor-κB activity and arachidonic acid-induced platelet aggregation. This study was performed to identify the metabolites of obovatol in human liver microsomes. Human liver microsomes incubated with obovatol in the presence of NADPH and/or UDPGA resulted in the formation of six metabolites, M1-M6. M1 and M2 were identified as hydroxyobovatol, on the basis of liquid chromatography/tandem mass spectrometric (LC-MS/MS) analysis. M1, M2 and obovatol were further metabolized to their glucuronide conjugates, obovatol-glucuronide (M3), obovatol-diglucuronide (M4) and hydroxyobovatol- glucuronide (M5 and M6). The inhibitory potency of obovatol on eight major human P450s was also investigated in human liver microsomes. In these experiments, obovatol strongly inhibited CYP2C19-mediated S-mephenytoin hydroxylase activity with an IC50 value of 0.8 μm, which could have implications for drug-drug interactions.
Original language | English |
---|---|
Pages (from-to) | 195-202 |
Number of pages | 8 |
Journal | Biopharmaceutics and Drug Disposition |
Volume | 34 |
Issue number | 4 |
DOIs | |
State | Published - May 2013 |
Keywords
- drug interaction
- glucuronidation
- microsomes
- obovatol
- oxidation