Abstract
Seongsanamide A is a bicyclic peptide with an isodityrosine residue discovered in Bacillus safensis KCTC 12796BP which exhibits anti-allergic activity in vitro and in vivo without significant cytotoxicity. The purpose of this study was to elucidate the in vitro metabolic pathway and potential for drug interactions of seongsanamide A in human liver microsomes using non-targeted metabolomics and feature-based molecular networking (FBMN) techniques. We identified four metabolites, and their structures were elucidated by interpretation of high-resolution tandem mass spectra. The primary metabolic pathway associated with seongsanamide A metabolism was hy-droxylation and oxidative hydrolysis. A reaction phenotyping study was also performed using recombinant cytochrome P450 isoforms. CYP3A4 and CYP3A5 were identified as the major metabolic enzymes responsible for metabolite formation. Seongsanamide A did not inhibit the cytochrome P450 isoforms commonly involved in drug metabolism (IC50 > 10 µM). These results will contribute to further understanding the metabolism and drug interaction potential of various bicyclic peptides.
Original language | English |
---|---|
Article number | 1031 |
Journal | Pharmaceutics |
Volume | 13 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2021 |
Keywords
- Bacillus sp. KCTC 12796BP
- Drug interaction
- High-resolution mass spec-trometry
- Metabolism
- Seongsanamide A