Influence of Dental Titanium Implants with Different Surface Treatments Using Femtosecond and Nanosecond Lasers on Biofilm Formation

Bo Yun Seo, Keun Ba Da Son, Young Tak Son, Ram Hari Dahal, Shukho Kim, Jungmin Kim, Jun Ho Hwang, Sung Min Kwon, Jae Mok Lee, Kyu Bok Lee, Jin Wook Kim

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

This study aimed to evaluate the impact of different surface treatments (machined; sandblasted, large grit, and acid-etched (SLA); hydrophilic; and hydrophobic) on dental titanium (Ti) implant surface morphology, roughness, and biofilm formation. Four groups of Ti disks were prepared using distinct surface treatments, including femtosecond and nanosecond lasers for hydrophilic and hydrophobic treatments. Surface morphology, wettability, and roughness were assessed. Biofilm formation was evaluated by counting the colonies of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Prevotella intermedia (Pi) at 48 and 72 h. Statistical analysis was conducted to compare the groups using the Kruskal–Wallis H test and the Wilcoxon signed-rank test (α = 0.05). The analysis revealed that the hydrophobic group had the highest surface contact angle and roughness (p < 0.05), whereas the machined group had significantly higher bacterial counts across all biofilms (p < 0.05). At 48 h, the lowest bacterial counts were observed in the SLA group for Aa and the SLA and hydrophobic groups for Pg and Pi. At 72 h, low bacterial counts were observed in the SLA, hydrophilic, and hydrophobic groups. The results indicate that various surface treatments affect implant surface properties, with the hydrophobic surface using femtosecond laser treatment exerting a particularly inhibitory effect on initial biofilm growth (Pg and Pi).

Original languageEnglish
Article number297
JournalJournal of Functional Biomaterials
Volume14
Issue number6
DOIs
StatePublished - Jun 2023

Keywords

  • biofilm formation
  • dental implants
  • femtosecond laser
  • nanosecond laser
  • surface roughness
  • surface treatment

Fingerprint

Dive into the research topics of 'Influence of Dental Titanium Implants with Different Surface Treatments Using Femtosecond and Nanosecond Lasers on Biofilm Formation'. Together they form a unique fingerprint.

Cite this