Integral domains in which every nonzero w-flat ideal is w-invertible

Hwankoo Kim, Jung Wook Lim

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Let D be an integral domain and w be the so-called w-operation on D. We define D to be a w-FF domain if every w-flat w-ideal of D is of w-finite type. This paper presents some properties of w-FF domains and related domains. Among other things, we study the w-FF property in the polynomial extension, the t-Nagata ring and the pullback construction.

Original languageEnglish
Article number247
JournalMathematics
Volume8
Issue number2
DOIs
StatePublished - 1 Feb 2020

Keywords

  • FF domain
  • FP domain
  • Prüfer v-multiplication domain
  • W-FF domain
  • W-flat
  • W-FP domain

Fingerprint

Dive into the research topics of 'Integral domains in which every nonzero w-flat ideal is w-invertible'. Together they form a unique fingerprint.

Cite this