Abstract
We develop miniature high-voltage sources from polymer solar cells (PSCs) with charge-transporting molybdenum oxide (MoOx) integrated in a serial architecture through sacrificial layer (SL)-assisted patterning. The MoOx layer, being patterned by the lift-off process of the SL of a hydrophobic fluorinated-polymer, as a hole transporting layer plays a critical role on the reduction of the dark current and the increase of a high open circuit voltage of an integrated PSC array. The underlying mechanism lies primarily on the elimination of the lateral charge pathways in the MoOx layer in the presence of the electrode interconnection. Two miniature voltage sources consisting of 20 PSCs and 50 PSCs are demonstrated in the operation of a liquid crystal display and an organic field-effect transistor, respectively. Our SL-assisted integration approach will be directly applicable for implementing the self-power sources made of the PSCs into a wide range of the electronic and optoelectronic devices.
Original language | English |
---|---|
Article number | 042301 |
Journal | Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers |
Volume | 53 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2014 |