TY - JOUR
T1 - Integrated quad-scanner strategy-based optical coherence tomography for the whole-directional volumetric imaging of a sample
AU - Saleah, Sm Abu
AU - Seong, Daewoon
AU - Han, Sangyeob
AU - Wijesinghe, Ruchire Eranga
AU - Ravichandran, Naresh Kumar
AU - Jeon, Mansik
AU - Kim, Jeehyun
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/2/2
Y1 - 2021/2/2
N2 - Whole-directional scanning methodology is required to observe distinctive features of an entire physical structure with a three dimensional (3D) visualization. However, the implementation of whole-directional scanning is challenging for conventional optical coherence tomography (OCT), which scans a limited portion of the sample by utilizing unidirectional and bidirectional scanning methods. Therefore, in this paper an integrated quad-scanner (QS) strategy-based OCT method was implemented to obtain the whole-directional volumetry of a sample by employing four scanning arms installed around the sample. The simultaneous and sequential image acquisition capabilities are the conceptual key points of the proposed QS-OCT method, and were implemented using four precisely aligned scanning arms and applied in a complementary way according to the experimental criteria. To assess the feasibility of obtaining whole-directional morphological structures, a roll of Scotch tape, an ex vivo mouse heart, and kidney specimens were imaged and independently obtained tissue images at different directions were delicately merged to compose the 3D volume data set. The results revealed the potential merits of QS-OCT-based whole-directional imaging, which can be a favorable inspection method for various discoveries that require the dynamic coordinates of the whole physical structure.
AB - Whole-directional scanning methodology is required to observe distinctive features of an entire physical structure with a three dimensional (3D) visualization. However, the implementation of whole-directional scanning is challenging for conventional optical coherence tomography (OCT), which scans a limited portion of the sample by utilizing unidirectional and bidirectional scanning methods. Therefore, in this paper an integrated quad-scanner (QS) strategy-based OCT method was implemented to obtain the whole-directional volumetry of a sample by employing four scanning arms installed around the sample. The simultaneous and sequential image acquisition capabilities are the conceptual key points of the proposed QS-OCT method, and were implemented using four precisely aligned scanning arms and applied in a complementary way according to the experimental criteria. To assess the feasibility of obtaining whole-directional morphological structures, a roll of Scotch tape, an ex vivo mouse heart, and kidney specimens were imaged and independently obtained tissue images at different directions were delicately merged to compose the 3D volume data set. The results revealed the potential merits of QS-OCT-based whole-directional imaging, which can be a favorable inspection method for various discoveries that require the dynamic coordinates of the whole physical structure.
KW - Full-directional imaging
KW - Optical coherence tomography
KW - Quad-scanner scanning strategy
KW - Whole-directional scanning
UR - http://www.scopus.com/inward/record.url?scp=85100622798&partnerID=8YFLogxK
U2 - 10.3390/s21041305
DO - 10.3390/s21041305
M3 - Article
C2 - 33670358
AN - SCOPUS:85100622798
SN - 1424-8220
VL - 21
SP - 1
EP - 12
JO - Sensors
JF - Sensors
IS - 4
M1 - 1305
ER -