Integrated Wearable and Mobile Ultrasound/Photoplethysmography Device via Transparent Ultrasound Transducer

Jeongwoo Park, Byullee Park, Donggyu Kim, Joongho Ahn, Jin Young Kim, Hyung Ham Kim, Chulhong Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Fusion sensors, including photoplethysmograms, cameras, microphones, ultrasound sensors, and accelerometers, are commonly used in mobile and wearable healthcare electronics to measure bio-signals. However, small size is in high demand, but integrating multiple sensors into small mobile or wearable devices is challenging. This study presents two new opto-ultrasound sensors: (1) a wearable device with both photoplethysmography (PPG) and ultrasound (US) capabilities, and (2) a PPG sensor built-in mobile smartphone with an integrated US sensor using a transparent ultrasound transducer (TUT). The TUT has a center frequency of 6 MHz, a 50% bandwidth, and is 82% transparent in the visible and near-infrared ranges. To demonstrate its potential, we developed a wearable device combining photoplethysmography and ultrasound capabilities and fused the TUT to the smartphone. We used this setup to measure heart rates optically and acoustically in human subjects and to calculate oxygen saturation optically through the TUT. This proof-of-concept represents a unique fusion of sensors for small mobile and wearable devices that aim to improve digital healthcare. The results of this research can serve as a basis for innovative development of sensor-based high-tech industrial applications such as healthcare, automobiles, robots, and drones.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2023
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781510658639
DOIs
StatePublished - 2023
EventPhotons Plus Ultrasound: Imaging and Sensing 2023 - San Francisco, United States
Duration: 29 Jan 20231 Feb 2023

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12379
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2023
Country/TerritoryUnited States
CitySan Francisco
Period29/01/231/02/23

Keywords

  • photoacoustic imaging
  • transparent ultrasound transducer

Fingerprint

Dive into the research topics of 'Integrated Wearable and Mobile Ultrasound/Photoplethysmography Device via Transparent Ultrasound Transducer'. Together they form a unique fingerprint.

Cite this