TY - JOUR
T1 - Interaction of the nuclear matrix-associated region (MAR)-binding proteins, SATB1 and CDP/Cux, with a MAR element (L2a) in an upstream regulatory region of the mouse CD8a gene
AU - Banan, Mehdi
AU - Rojas, Ingrid C.
AU - Lee, Won Ha
AU - King, Heather L.
AU - Harriss, June V.
AU - Kobayashi, Ryuji
AU - Webb, Carol F.
AU - Gottlieb, Paul D.
PY - 1997/7/18
Y1 - 1997/7/18
N2 - Matrix-associated regions (MARs), AT-rich DNA segments that have an affinity for the nuclear matrix, have been shown to play a role in transcriptional regulation of eukaryotic genes. The present study demonstrates that a DNA element, called L2a, which has been implicated in the transcriptional regulation of the mouse CD8a gene encoding an important T cell coreceptor, is a MAR. Moreover, the identities of two nuclear proteins, L2a-P1 and L2a-P2, previously shown to bind to the L2a element, have been determined. The L2a-P1 protein found to be present in all CD8-positive T cell lines tested is SATB1, a known MAR-binding protein. The widely expressed L2a- P2 protein is CDP/Cux, a MAR-binding protein that has been associated with repression of gene transcription. Interaction of both proteins with the L2a element was studied using the missing nucleoside approach, DNase I footprinting, and electrophoretic mobility shift assays with wild type and mutant L2a elements. The data suggest that CDP/Cux bound to the L2a element is displaced by binding of SATB1 and the accompanying conformational change in the DNA lying between the primary binding sites of SATB1 and CDP/Cux. We suggest that displacement of CDP/Cux by SATB1 favors transcription of the CD8a gene, possibly by enhancing or altering its association with the nuclear matrix.
AB - Matrix-associated regions (MARs), AT-rich DNA segments that have an affinity for the nuclear matrix, have been shown to play a role in transcriptional regulation of eukaryotic genes. The present study demonstrates that a DNA element, called L2a, which has been implicated in the transcriptional regulation of the mouse CD8a gene encoding an important T cell coreceptor, is a MAR. Moreover, the identities of two nuclear proteins, L2a-P1 and L2a-P2, previously shown to bind to the L2a element, have been determined. The L2a-P1 protein found to be present in all CD8-positive T cell lines tested is SATB1, a known MAR-binding protein. The widely expressed L2a- P2 protein is CDP/Cux, a MAR-binding protein that has been associated with repression of gene transcription. Interaction of both proteins with the L2a element was studied using the missing nucleoside approach, DNase I footprinting, and electrophoretic mobility shift assays with wild type and mutant L2a elements. The data suggest that CDP/Cux bound to the L2a element is displaced by binding of SATB1 and the accompanying conformational change in the DNA lying between the primary binding sites of SATB1 and CDP/Cux. We suggest that displacement of CDP/Cux by SATB1 favors transcription of the CD8a gene, possibly by enhancing or altering its association with the nuclear matrix.
UR - http://www.scopus.com/inward/record.url?scp=0030829528&partnerID=8YFLogxK
U2 - 10.1074/jbc.272.29.18440
DO - 10.1074/jbc.272.29.18440
M3 - Article
C2 - 9218488
AN - SCOPUS:0030829528
SN - 0021-9258
VL - 272
SP - 18440
EP - 18452
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 29
ER -