Intermittency of turbulence within open canopies

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Eddy covariance data have been analyzed to examine intermittency and clustering properties of turbulence within open canopies. Intermittency consists of two aspects: one is related to amplitude variation and the other to clustering. Using the telegraph approximation (TA), the clustering properties have been separated from amplitude effects. Intermittency of canopy turbulence has been explored via clustering exponent, probability density distribution of inter-pulse period of TA, intermittency exponent and structure kurtosis. Intermittency and clustering properties of turbulence within open canopies show similar features to those within dense canopy but some differences are also noted. Unlike within a dense canopy, temperature does not show larger clustering than velocity, which seems to be due to a different thermal structure of the sub-canopy and larger vertical scale of canopy eddy within open canopies. Within the crown region, the inter-pulse probability distribution of TA does not show the 'double regime' which was observed within the crown of a dense canopy, indicating less influence of near-field source on canopy turbulence within open canopies. For TA series of the flow variables, intermittency exponent is higher for temperature than for two velocity components within open canopies, which are opposite within a dense canopy. When comparing intermittency for flow variables and their TA series, it is shown that amplitude variation mitigates intermittency for both velocity components and temperature although amplitude variations play a much larger role in velocity intermittency than in temperature counterpart. Kurtosis analysis demonstrates that structure kurtosis is higher at large scales in stable conditions than in unstable conditions, indicating the existence of global intermittency due to stable stratification. The intermittency features of canopy turbulence within open canopies have been discussed in comparison with those within a dense canopy.

Original languageEnglish
Pages (from-to)137-149
Number of pages13
JournalAsia-Pacific Journal of Atmospheric Sciences
Volume47
Issue number2
DOIs
StatePublished - Feb 2011

Keywords

  • Canopy turbulence
  • clustering
  • intermittency
  • open canopy

Fingerprint

Dive into the research topics of 'Intermittency of turbulence within open canopies'. Together they form a unique fingerprint.

Cite this