Inverse scattering scheme based on the moment method in the spectral domain, part i: Theory

se Yun Kim, Hyun Chul Choi, Jae Min Lee, Jung Woong ra

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Recently, electromagnetic and ultrasonic imaging of inhomogeneous objects by applying the moment-method procedures of forward scattering problems in the reverse sequence have been developed. In this paper, the inverse scattering formulation has been modified to be applicable in the spectral domain. Compared to previous schemes, the suggested formulation illustrates clearly the actual mechanism of the inverse scattering process by explicit separation of the contributions from several variables, such as the measurement location, basis function, and geometry of objects. The ill-posedness inherent in inverse scattering problems was also explained easily in this spectral scheme by the exponentially-decaying behavior of high-frequency spectral components of the scattered field. It implies that enlargement of the discretized cell size is a key factor in regularizing the ill-posedness. In particular, since the singular kernel to be integrated on each cell became regular in the modified scheme, various types of basis functions instead of pulse function were adopted without additional difficulties. This advantage is expected to play an important role in regularizing the noise effect by selecting polynomial basis function on the enlarged cells of discretization in the spectral inverse scattering scheme.

Original languageEnglish
Pages (from-to)16-28
Number of pages13
JournalUltrasonic Imaging
Volume14
Issue number1
DOIs
StatePublished - Jan 1992

Keywords

  • Acoustic imaging
  • diffraction
  • inverse scattering
  • moment method
  • regularization

Fingerprint

Dive into the research topics of 'Inverse scattering scheme based on the moment method in the spectral domain, part i: Theory'. Together they form a unique fingerprint.

Cite this