Abstract
This paper has investigated the synthesis of plasma-polymerized pyrrole (pPPy) nano-particles grown by the proposed atmospheric pressure plasma jets (APPJs) through the parametric studies, especially input power and gas flow rate. The transition of conventional streamer-like into intense and glow-like discharges necessary for fully cracking the monomer was observed to be strongly dependent on both input power and gas flow rate. The intense and glow-like discharge was produced only when adopting the specific parametric condition, i.e., a gas flow rate of 1600 sccm and input power with 12.5 kV, thereby resulting in obtaining the synthesized pPPy nano-particle structures with highly cross-linked networks and many double bonds. The plasma-flow characteristics were investigated based on the non-plasma flow numerical simulation, and also analyzed by the voltage, current, infrared, and optical emission spectroscopy (OES). The synthesized pPPy films were analyzed by field-emission scanning electron microscopy (FE-SEM) and Fourier infrared spectroscopy (FT-IR). It is anticipated that the high-quality plasma polymer grown by the proposed APPJs contributes to serving as conducting electrode-materials of a flexible polymer light emitting diode (P-LED).
Original language | English |
---|---|
Pages (from-to) | 26-34 |
Number of pages | 9 |
Journal | Molecular Crystals and Liquid Crystals |
Volume | 651 |
Issue number | 1 |
DOIs | |
State | Published - 3 Jul 2017 |
Keywords
- Atmospheric pressure plasma polymerization
- conducting polymer
- electrode-material
- numerical theory
- pyrrole