TY - JOUR
T1 - Isolation and characterization of the 5'-upstream region of the human N- type calcium channel subunit gene
T2 - Chromosomal localization and promoter analysis
AU - Kim, Dong S.
AU - Jung, Hyun Ho
AU - Park, Sun Hwa
AU - Chin, Hemin
PY - 1997/2/21
Y1 - 1997/2/21
N2 - ω-Conotoxin-sensitive N-type Ca2+ channels, unlike dihydropyridine- sensitive L-type channels, are exclusively expressed in nervous tissues. To understand the molecular basis for neuron-specific expression of the N-type channel, we have isolated genomic clones encoding the human α(1B) subunit gene, localized to the long arm of chromosome 9 (9q34) by fluorescence in situ hybridization, and characterized its 5'-upstream region. The proximaI promoter of the α(1B) subunit gene lacks a typical TATA box, is highly GC- rich, and contains several sequences for transcription factor binding. Primer extension experiments revealed the presence of two transcription start sites. In vitro transfection study of the α(1B) subunit-luciferase fusion gene showed that the 4.0-kb 5'-flanking region of the α(1B) gene functions as an efficient promoter in neuronal cells but not in glioma or nonneuronal cells, consistent with the patterns of the endogenous α(1B) gene expression in these cells. Deletion analysis of α(1B) subunit-luciferase fusion gene constructs further revealed the presence of several cis-acting regulatory elements, including a potential repressor located in the distal upstream region (-3992 to -1788) that may be important for the neuron-specific expression of the N-type Ca2+ channel α(1B) subunit gene.
AB - ω-Conotoxin-sensitive N-type Ca2+ channels, unlike dihydropyridine- sensitive L-type channels, are exclusively expressed in nervous tissues. To understand the molecular basis for neuron-specific expression of the N-type channel, we have isolated genomic clones encoding the human α(1B) subunit gene, localized to the long arm of chromosome 9 (9q34) by fluorescence in situ hybridization, and characterized its 5'-upstream region. The proximaI promoter of the α(1B) subunit gene lacks a typical TATA box, is highly GC- rich, and contains several sequences for transcription factor binding. Primer extension experiments revealed the presence of two transcription start sites. In vitro transfection study of the α(1B) subunit-luciferase fusion gene showed that the 4.0-kb 5'-flanking region of the α(1B) gene functions as an efficient promoter in neuronal cells but not in glioma or nonneuronal cells, consistent with the patterns of the endogenous α(1B) gene expression in these cells. Deletion analysis of α(1B) subunit-luciferase fusion gene constructs further revealed the presence of several cis-acting regulatory elements, including a potential repressor located in the distal upstream region (-3992 to -1788) that may be important for the neuron-specific expression of the N-type Ca2+ channel α(1B) subunit gene.
UR - http://www.scopus.com/inward/record.url?scp=0031053983&partnerID=8YFLogxK
U2 - 10.1074/jbc.272.8.5098
DO - 10.1074/jbc.272.8.5098
M3 - Article
C2 - 9030575
AN - SCOPUS:0031053983
SN - 0021-9258
VL - 272
SP - 5098
EP - 5104
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
ER -