Abstract
Silicon (Si) and phosphorus (P) are beneficial nutrient elements for plant growth. These elements are widely used in chemical fertilizers despite their abundance in the earth’s crust. Excessive use of chemical fertilizers is a threat to sustainable agriculture. Here, we screened different Si and P solubilizing bacterial strains from the diverse rice fields of Daegu, Korea. The strain with high Si and P solubilizing ability was selected and identified as Enterobacter ludwigii GAK2 through 16S rRNA gene sequence analysis. The isolate GAK2 produced organic acids (citric acid, acetic acid, and lactic acid), indole-3-acetic acid, and gibberellic acid (GA 1 , GA 3 ) in Luria-Bertani media. In addition, GAK2 inoculation promoted seed germination in a gibberellin deficient rice mutant Waito-C and rice cultivar ‘Hwayoungbyeo’. Overall, the isolate GAK2 increased root length, shoot length, fresh biomass, and chlorophyll content of rice plants. These findings reveal that E. ludwigii GAK2 is a potential silicon and phosphate bio-fertilizer.
Original language | English |
---|---|
Article number | 144 |
Journal | Agronomy |
Volume | 9 |
Issue number | 3 |
DOIs | |
State | Published - 20 Mar 2019 |
Keywords
- Enterobacter ludwigii GAK2
- Phosphorus
- Plant growth
- Silicon
- Solubilization