Abstract
A total of 155 microbial strains were isolated from the Korean traditional soybean paste based on their morphological features on the growth of agar plate. Among the isolated strains, a total of 28 strains were capable of hydrolyzing isoflavone glycoside to isoflavone aglycone efficiently in the soybean paste. Finally, two strains, K123-1 and SI, were selected because of their resistance to 15% NaCl and ability to convert isoflavone glycoside to isoflavone aglycone efficiently during the fermentation of soybean paste. The isolated strains K123-1 and SI were identified to be Pichia guilli-ermondii and Candida fermentati, respectively, using the partial 26S rDNA sequence analysis and phylogenic analysis. Pichia guilliermondii K123-1 and Candida fermentati SI converted daidzin to daidzein up to 96% and 95%, respectively, and genistin to genistein up to 92% when soybean pastes were fermented at 30°C for 20 days with a single isolated strain. Pichia guilliermondii K123-1 and Candida fermentati SI were able to grow in the presence of 15% NaCl on both liquid medium and agar plate. We think that Pichia guilliermondii K123-1 and Candida fermentati SI might be one of good candidates for making functional soybean paste because they are isolated from the Korean traditional soybean paste and have a good ability to convert isoflavone glycosides to isoflavone aglycones and a high salt tolerance.
| Original language | English |
|---|---|
| Pages (from-to) | 163-169 |
| Number of pages | 7 |
| Journal | Journal of Applied Biological Chemistry |
| Volume | 52 |
| Issue number | 4 |
| DOIs | |
| State | Published - 2009 |
Keywords
- Candida fermentati
- Isoflavone
- Pichia guilliermondii
- Soybean paste
- β-glycosidase