TY - JOUR
T1 - Isolation of therapeutic extracellular vesicles using nanoporous membranes with uniform nanopores
AU - Lee, Gyeong Won
AU - Koo, Kyo Ick
AU - Sung, Soo Eun
AU - Kim, Young In
AU - Seo, Min Soo
AU - Park, Wook Tae
AU - Yang, Seung Yun
AU - Lee, Gun Woo
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
PY - 2025/9
Y1 - 2025/9
N2 - Extracellular vesicles (EVs) are nanosized particles secreted by most cells for information transmission, which affects the microenvironment. EVs are known to follow the characteristics and conditions of their mother cells and have attracted considerable attention for disease diagnosis and therapeutic effects. In particular, mesenchymal stem cell (MSC)-derived EVs have shown potential for facilitating regenerative wound healing, modulating immune responses, and inhibiting inflammatory diseases. However, previous isolation methods demonstrated limited EV yield, purity, and filter capacity. Here, we report a two-step tangential flow filtration (TFF) system using track-etched membranes with uniform cylindrical nanopores for effectively isolating EVs with high purity and yield. Using two different uniform nanoporous track-etched membranes (50 and 200 nm), only the particles in the small EV (sEV) size range were separated through a size-exclusion mechanism. Comparative analysis with the existing ultrafiltration membrane-based TFF system revealed that the nanoporous membrane-based TFF (Nano-TFF) system exhibited a separation efficiency (yield) exceeding twofold, achieving sEVs purity surpassing 90%. The efficacy of the highly purified sEVs was validated by incorporating them into wound dressing material and applying them to a wound animal model. Notably, the sEVs-loaded wound dressing group demonstrated enhanced wound recovery compared to control groups. The Nano-TFF system, which provides precise separation and high efficiency, can be applied to separate various bioactive agents, including sEVs, that require high-purity isolation.
AB - Extracellular vesicles (EVs) are nanosized particles secreted by most cells for information transmission, which affects the microenvironment. EVs are known to follow the characteristics and conditions of their mother cells and have attracted considerable attention for disease diagnosis and therapeutic effects. In particular, mesenchymal stem cell (MSC)-derived EVs have shown potential for facilitating regenerative wound healing, modulating immune responses, and inhibiting inflammatory diseases. However, previous isolation methods demonstrated limited EV yield, purity, and filter capacity. Here, we report a two-step tangential flow filtration (TFF) system using track-etched membranes with uniform cylindrical nanopores for effectively isolating EVs with high purity and yield. Using two different uniform nanoporous track-etched membranes (50 and 200 nm), only the particles in the small EV (sEV) size range were separated through a size-exclusion mechanism. Comparative analysis with the existing ultrafiltration membrane-based TFF system revealed that the nanoporous membrane-based TFF (Nano-TFF) system exhibited a separation efficiency (yield) exceeding twofold, achieving sEVs purity surpassing 90%. The efficacy of the highly purified sEVs was validated by incorporating them into wound dressing material and applying them to a wound animal model. Notably, the sEVs-loaded wound dressing group demonstrated enhanced wound recovery compared to control groups. The Nano-TFF system, which provides precise separation and high efficiency, can be applied to separate various bioactive agents, including sEVs, that require high-purity isolation.
KW - Immune response
KW - Inflammation
KW - Mesenchymal stem cells
KW - Nanoporous membrane
KW - Small extracellular vesicles
UR - https://www.scopus.com/pages/publications/105010487049
U2 - 10.1007/s10544-025-00761-2
DO - 10.1007/s10544-025-00761-2
M3 - Article
C2 - 40637893
AN - SCOPUS:105010487049
SN - 1387-2176
VL - 27
JO - Biomedical Microdevices
JF - Biomedical Microdevices
IS - 3
M1 - 35
ER -