TY - JOUR
T1 - Kinematic analysis of a clamp-type picking device for an automatic pepper transplanter
AU - Islam, Md Nafiul
AU - Iqbal, Md Zafar
AU - Ali, Mohammod
AU - Chowdhury, Milon
AU - Kabir, Md Shaha Nur
AU - Park, Tusan
AU - Kim, Yong Joo
AU - Chung, Sun Ok
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12
Y1 - 2020/12
N2 - Pepper is one of the most vital agricultural products with high economic value, and pepper production needs to satisfy the growing worldwide population by introducing automatic seedling transplantation techniques. Optimal design and dimensioning of picking device components for an automatic pepper transplanter are crucial for efficient and effective seedling transplantation. Therefore, kinematic analysis, virtual model simulation, and validation testing of a prototype were conducted to propose a best-suited dimension for a clamp-type picking device. The proposed picking device mainly consisted of a manipulator with five grippers and a picking stand. To analyze the influence of design variables through kinematic analysis, 250-to 500-mm length combinations were considered to meet the trajectory requirements and suit the picking workspace. Virtual model simulation and high-speed photography tests were conducted to obtain the kinematic characteristics of the picking device. According to the kinematic analysis, a 350-mm picking stand and a 380-mm manipulator were selected within the range of the considered combinations. The maximum velocity and acceleration of the grippers were recorded as 1.1, 2.2 m/s and 1.3, 23.7 m/s2, along the x-and y-axes, respectively, for 30 to 90 rpm operating conditions. A suitable picking device dimension was identified and validated based on the suitability of the picking device working trajectory, velocity, and acceleration of the grippers, and no significant difference (p ≤ 0.05) occurred between the simulation and validation tests. This study indicated that the picking device under development would increase the pepper seedling picking accuracy and motion safety by reducing the operational time, gripper velocity, acceleration, and mechanical damage.
AB - Pepper is one of the most vital agricultural products with high economic value, and pepper production needs to satisfy the growing worldwide population by introducing automatic seedling transplantation techniques. Optimal design and dimensioning of picking device components for an automatic pepper transplanter are crucial for efficient and effective seedling transplantation. Therefore, kinematic analysis, virtual model simulation, and validation testing of a prototype were conducted to propose a best-suited dimension for a clamp-type picking device. The proposed picking device mainly consisted of a manipulator with five grippers and a picking stand. To analyze the influence of design variables through kinematic analysis, 250-to 500-mm length combinations were considered to meet the trajectory requirements and suit the picking workspace. Virtual model simulation and high-speed photography tests were conducted to obtain the kinematic characteristics of the picking device. According to the kinematic analysis, a 350-mm picking stand and a 380-mm manipulator were selected within the range of the considered combinations. The maximum velocity and acceleration of the grippers were recorded as 1.1, 2.2 m/s and 1.3, 23.7 m/s2, along the x-and y-axes, respectively, for 30 to 90 rpm operating conditions. A suitable picking device dimension was identified and validated based on the suitability of the picking device working trajectory, velocity, and acceleration of the grippers, and no significant difference (p ≤ 0.05) occurred between the simulation and validation tests. This study indicated that the picking device under development would increase the pepper seedling picking accuracy and motion safety by reducing the operational time, gripper velocity, acceleration, and mechanical damage.
KW - Agricultural machinery
KW - Kinematic analysis
KW - Pepper
KW - Picking device
KW - Transplanter
UR - http://www.scopus.com/inward/record.url?scp=85097685964&partnerID=8YFLogxK
U2 - 10.3390/agriculture10120627
DO - 10.3390/agriculture10120627
M3 - Article
AN - SCOPUS:85097685964
SN - 2077-0472
VL - 10
SP - 1
EP - 18
JO - Agriculture (Switzerland)
JF - Agriculture (Switzerland)
IS - 12
M1 - 627
ER -