@inproceedings{9c146ed9405740f2b0f35b2f3d9ffd6c,
title = "KoDialogBench: Evaluating Conversational Understanding of Language Models with Korean Dialogue Benchmark",
abstract = "As language models are often deployed as chatbot assistants, it becomes a virtue for models to engage in conversations in a user's first language. While these models are trained on a wide range of languages, a comprehensive evaluation of their proficiency in low-resource languages such as Korean has been lacking. In this work, we introduce KoDialogBench, a benchmark designed to assess language models' conversational capabilities in Korean. To this end, we collect native Korean dialogues on daily topics from public sources, or translate dialogues from other languages. We then structure these conversations into diverse test datasets, spanning from dialogue comprehension to response selection tasks. Leveraging the proposed benchmark, we conduct extensive evaluations and analyses of various language models to measure a foundational understanding of Korean dialogues. Experimental results indicate that there exists significant room for improvement in models' conversation skills. Furthermore, our in-depth comparisons across different language models highlight the effectiveness of recent training techniques in enhancing conversational proficiency. We anticipate that KoDialogBench will promote the progress towards conversation-aware Korean language models.",
keywords = "Benchmark, Conversation, Dialogue, Evaluation, Korean, Language Model",
author = "Seongbo Jang and Seonghyeon Lee and Hwanjo Yu",
note = "Publisher Copyright: {\textcopyright} 2024 ELRA Language Resource Association: CC BY-NC 4.0.; Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 ; Conference date: 20-05-2024 Through 25-05-2024",
year = "2024",
language = "English",
series = "2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings",
publisher = "European Language Resources Association (ELRA)",
pages = "9905--9925",
editor = "Nicoletta Calzolari and Min-Yen Kan and Veronique Hoste and Alessandro Lenci and Sakriani Sakti and Nianwen Xue",
booktitle = "2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings",
}