TY - JOUR
T1 - Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge
AU - Lee, Sang In
AU - Kim, Hyun Soo
AU - Koo, Jin Mo
AU - Kim, In Ho
N1 - Publisher Copyright:
© Copyright 2016 The Authors.
PY - 2016/2/28
Y1 - 2016/2/28
N2 - A total of forty weaned pigs ((Landrace×Yorkshire)×Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1 % L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1 % L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.
AB - A total of forty weaned pigs ((Landrace×Yorkshire)×Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1 % L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1 % L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.
KW - Inflammatory cytokines
KW - Lactobacillus acidophilus
KW - Lipopolysaccharide
KW - Peripheral blood mononuclear cells
KW - Toll-like receptor 4
UR - http://www.scopus.com/inward/record.url?scp=84956713195&partnerID=8YFLogxK
U2 - 10.1017/S0007114515004857
DO - 10.1017/S0007114515004857
M3 - Article
C2 - 26769562
AN - SCOPUS:84956713195
SN - 0007-1145
VL - 115
SP - 567
EP - 575
JO - British Journal of Nutrition
JF - British Journal of Nutrition
IS - 4
ER -