Learning explainable time-morphology patterns for automatic arrhythmia classification from short single-lead ecgs

Hyeonjeong Lee, Miyoung Shin

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Automatic detection of abnormal heart rhythms, including atrial fibrillation (AF), using signals obtained from a single-lead wearable electrocardiogram (ECG) device, is useful for daily cardiac health monitoring. In this study, we propose a novel image-based deep learning framework to classify single-lead ECG recordings of short variable length into several different rhythms associated with arrhythmias. By transforming variable-length 1D ECG signals into fixed-size 2D time-morphology representations and feeding them to the beat–interval–texture convolutional neural network (BIT-CNN) model, we aimed to learn the comprehensible characteristics of beat shape and inter-beat patterns over time for arrhythmia classification. The proposed approach allows feature embedding vectors to provide interpretable time-morphology patterns focused at each step of the learning process. In addition, this method reduces the number of model parameters needed to be trained and aids visual interpretation, while maintaining similar performance to other CNN-based approaches to arrhythmia classification. For experiments, we used the PhysioNet/CinC Challenge 2017 dataset and achieved an overall F1_NAO of 81.75% and F1_NAOP of 76.87%, which are comparable to those of the state-of-the-art methods for variable-length ECGs.

Original languageEnglish
Article number4331
JournalSensors
Volume21
Issue number13
DOIs
StatePublished - 1 Jul 2021

Keywords

  • Arrhythmia classification
  • Atrial fibrillation (AF)
  • Convolutional neural network (CNN)
  • Deep learning
  • Electrocardiogram (ECG)

Fingerprint

Dive into the research topics of 'Learning explainable time-morphology patterns for automatic arrhythmia classification from short single-lead ecgs'. Together they form a unique fingerprint.

Cite this