Abstract
Here we report the observation of Fermi surface (FS) pockets via the Shubnikov-de Haas effect in NaxCoO2 for x=0.71 and 0.84, respectively. Our observations indicate that the FS expected for each compound intersects their corresponding Brillouin zones, as defined by the previously reported superlattice structures, leading to small reconstructed FS pockets, but only if a precise number of holes per unit cell is localized. For 0.71≤x<0.75 the coexistence of itinerant carriers and localized S=1/2 spins on a paramagnetic triangular superlattice leads at low temperatures to the observation of a deviation from standard Fermi-liquid behavior in the electrical transport and heat capacity properties, suggesting the formation of some kind of quantum spin-liquid ground state.
Original language | English |
---|---|
Article number | 126405 |
Journal | Physical Review Letters |
Volume | 100 |
Issue number | 12 |
DOIs | |
State | Published - 28 Mar 2008 |