TY - GEN
T1 - Localization of an unmanned ground vehicle using 3D registration of laser range data and DSM
AU - Park, Soon Yong
AU - Choi, Sung In
AU - Moon, Jaekyoung
AU - Kim, Joon
AU - Park, Yong Woon
PY - 2009
Y1 - 2009
N2 - Localization of an unmanned ground vehicle (UGV) is a very important task for autonomous vehicle navigation. In this paper, we propose a computer vision technique to identify the location of an outdoor UGV. The proposed technique is based on 3D registration of 360 degree laser range data to a digital surface model (DSM). A long sequence of range frames is obtained from a rotating range sensor which is mounted on the top of the vehicle. Two novel approaches are proposed for accurate 3D registration of range data and the DSM. First, registration is done between range frames in a pair-wise manner followed by a refinement with the DSM. Second, we divide the DSM to several layers and find correspondences near the current vehicle elevation. This reduces the number of outliers and facilitates fast localization. Experimental results show that the proposed approaches yield better performance in 3D localization compared to conventional 3D registration techniques. Error analysis on four outdoor paths is presented with respect to ground truth.
AB - Localization of an unmanned ground vehicle (UGV) is a very important task for autonomous vehicle navigation. In this paper, we propose a computer vision technique to identify the location of an outdoor UGV. The proposed technique is based on 3D registration of 360 degree laser range data to a digital surface model (DSM). A long sequence of range frames is obtained from a rotating range sensor which is mounted on the top of the vehicle. Two novel approaches are proposed for accurate 3D registration of range data and the DSM. First, registration is done between range frames in a pair-wise manner followed by a refinement with the DSM. Second, we divide the DSM to several layers and find correspondences near the current vehicle elevation. This reduces the number of outliers and facilitates fast localization. Experimental results show that the proposed approaches yield better performance in 3D localization compared to conventional 3D registration techniques. Error analysis on four outdoor paths is presented with respect to ground truth.
UR - http://www.scopus.com/inward/record.url?scp=77951196601&partnerID=8YFLogxK
U2 - 10.1109/WACV.2009.5403059
DO - 10.1109/WACV.2009.5403059
M3 - Conference contribution
AN - SCOPUS:77951196601
SN - 9781424454976
T3 - 2009 Workshop on Applications of Computer Vision, WACV 2009
BT - 2009 Workshop on Applications of Computer Vision, WACV 2009
T2 - 2009 Workshop on Applications of Computer Vision, WACV 2009
Y2 - 7 December 2009 through 8 December 2009
ER -