Localized earth mover's distance for robust histogram comparison

Kwang Hee Won, Soon Ki Jung

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The Earth Mover's Distance (EMD) is a useful cross-bin distance metric for comparing two histograms. The EMD is based on the minimal cost that must be paid to transform one histogram into the other. But outlier noise in the histogram causes the EMD to be greatly exaggerated. In this paper, we propose the localized Earth Mover's Distance (LEMD). The LEMD separates noises from meaningful transportation of data by specifying local relations among bins, and gives a predefined penalty to those noises, according to the applications. An extended version of the tree-based transportation simplex algorithm is proposed for LEMD. The localized property of LEMD is formulated similarly to the original EMD with the thresholded ground distance, such as EMD-hat [7] and FastEMD [8]. However, we show that LEMD is more stable than EMD-hat for noise-added or shape-deformed data, and is faster than FastEMD that is the state of the art among EMD variants.

Original languageEnglish
Title of host publicationComputer Vision, ACCV 2010 - 10th Asian Conference on Computer Vision, Revised Selected Papers
Pages478-489
Number of pages12
EditionPART 1
DOIs
StatePublished - 2011
Event10th Asian Conference on Computer Vision, ACCV 2010 - Queenstown, New Zealand
Duration: 8 Nov 201012 Nov 2010

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume6492 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference10th Asian Conference on Computer Vision, ACCV 2010
Country/TerritoryNew Zealand
CityQueenstown
Period8/11/1012/11/10

Fingerprint

Dive into the research topics of 'Localized earth mover's distance for robust histogram comparison'. Together they form a unique fingerprint.

Cite this