Abstract
In this study, we fabricated an ultraviolet (UV) photodetector by blending a hybrid photoactive layer (HPL) that is composed of a hybrid structure containing Carbon Quantum Dots (CQDs) and Zinc Oxide Nanorods (ZnO NRs). To observe the effective photo-inducing abilities of CQDs and ZnO NRs, we analyzed the electrical properties of a UV photodetector using an HPL of CQDs/ZnO NRs. Under an illumination of 365 nm UV light with an intensity of 1 mW/cm2, the UV photodetector exhibited a high detectivity of 8.33 × 1012 Jones, which is higher than that of a UV photodetector using a HPL of blended poly-n-vinylcarbazole (PVK) and ZnO NRs. Experimental results show that an HPL of blended CQDs/ZnO NRs can induce efficient charge extraction from CQDs and ZnO NRs. In addition, CQDs act as charge controllers that enable hole-electron separation in the device upon UV illumination. These results indicate that synthesized CQDs can substitute for a charge transport polymer (i.e., PVK) and that a UV photodetector using CQDs can exhibit high detectivity.
Original language | English |
---|---|
Pages (from-to) | 250-257 |
Number of pages | 8 |
Journal | Organic Electronics |
Volume | 39 |
DOIs | |
State | Published - 1 Dec 2016 |
Keywords
- Carbon Quantum Dots
- Hybrid
- UV photodetector
- ZnO nanorods