Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis

Hyun Kyung Lee, Tayaba Ismail, Chowon Kim, Youni Kim, Jeen Woo Park, Oh Shin Kwon, Beom Sik Kang, Dong Seok Lee, Taejoon Kwon, Tae Joo Park, Hyun Shik Lee

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Epigenetic modifier lysine demethylase 3a (Kdm3a) specifically demethylates mono- and di-methylated ninth lysine of histone 3 and belongs to the Jumonji domain-containing group of demethylases. Kdm3a serves roles during various biological and pathophysiological processes, including spermatogenesis and metabolism, determination of sex, androgen receptor-mediated transcription and embryonic carcinoma cell differentiation. In the present study, physiological functions of Kdm3a were evaluated during embryogenesis of Xenopus laevis. Spatiotemporal expression pattern indicated that kdm3a exhibited its expression from early embryonic stages until tadpole stage, however considerable increase of kdm3a expression was observed during the neurula stage of Xenopus development. Depleting kdm3a using kdm3a antisense morpholino oligonucleotides induced anomalies, including head deformities, small-sized eyes and abnormal pigmentation. Whole-mount in situ hybridization results demonstrated that kdm3a knockdown was associated with defects in neural crest migration. Further, quantitative polymerase chain reaction revealed abnormal expression of neural markers in kdm3a morphants. RNA sequencing of kdm3a morphants indicated that kdm3a was implicated in mesoderm formation, cell adhesion and metabolic processes of embryonic development. In conclusion, the results of the present study indicated that Kdm3a may serve a role in neural development during Xenopus embryogenesis and may be targeted for treatment of developmental disorders. Further investigation is required to elucidate the molecular mechanism underlying the regulation of neural development by Kdm3a.

Original languageEnglish
Pages (from-to)1105-1113
Number of pages9
JournalInternational Journal of Molecular Medicine
Volume43
Issue number2
DOIs
StatePublished - Feb 2019

Keywords

  • Craniofacial development
  • Histone demethylase
  • Lysine demethylase 3a
  • Neural crest
  • Xenopus laevis

Fingerprint

Dive into the research topics of 'Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis'. Together they form a unique fingerprint.

Cite this