Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent

Son Long Ho, Hyunsil Cha, In Taek Oh, Ki Hye Jung, Mi Hyun Kim, Yong Jin Lee, Xu Miao, Tirusew Tegafaw, Mohammad Yaseen Ahmad, Kwon Seok Chae, Yongmin Chang, Gang Ho Lee

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Monodisperse and ultrasmall gadolinium oxide (Gd2O3) nanoparticle colloids (davg = 1.5 nm) (nanoparticle colloid = nanoparticle coated with hydrophilic ligand) were synthesized and their performance as a multifunctional tumor theragnostic agent was investigated. The aqueous ultrasmall nanoparticle colloidal suspension was stable and non-toxic owing to hydrophilic polyacrylic acid (PAA) coating that was partly conjugated with rhodamine B (Rho) for an additional functionalization (mole ratio of PAA-Rho = 5-1). First, the ultrasmall nanoparticle colloids performed well as a powerful T1 magnetic resonance imaging (MRI) contrast agent: they exhibited a very high longitudinal water proton relaxivity (r1) of 22.6 s-1 mM-1 (r2/r1 = 1.3, r2 = transverse water proton relaxivity), which was ∼6 times higher than those of commercial Gd-chelates, and high positive contrast enhancements in T1 MR images in a nude mouse after intravenous administration. Second, the ultrasmall nanoparticle colloids were applied to gadolinium neutron capture therapy (GdNCT) in vitro and exhibited a significant U87MG tumor cell death (28.1% net value) after thermal neutron beam irradiation, which was 1.75 times higher than that obtained using commercial Gadovist. Third, the ultrasmall nanoparticle colloids exhibited stronger fluorescent intensities in tumor cells than in normal cells owing to conjugated Rho, proving their pH-sensitive fluorescent tumor cell detection ability. All these results together demonstrate that ultrasmall Gd2O3 nanoparticle colloids are the potential multifunctional tumor theragnostic agent.

Original languageEnglish
Pages (from-to)12653-12665
Number of pages13
JournalRSC Advances
Volume8
Issue number23
DOIs
StatePublished - 2018

Fingerprint

Dive into the research topics of 'Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent'. Together they form a unique fingerprint.

Cite this