Maintained ENaC trafficking in aldosterone-infused rats during mineralocorticoid and glucocorticoid receptor blockade

Jakob Nielsen, Tae Hwan Kwon, Jørgen Frøkiær, Mark A. Knepper, Søren Nielsen

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Aldosterone induces redistribution of epithelial sodium channel (ENaC) to the apical plasma membrane from intracellular vesicles in renal connecting tubule (CNT) and cortical collecting duct (CCD). The role of the classical mineralocorticoid receptor (MR) in ENaC trafficking is still debated. We examined whether the MR antagonist spironolactone affects ENaC regulation in the kidney cortex of aldosterone-infused rats. Aldosterone infusion for 7 days resulted in a plasma aldosterone concentration in the high physiological range (3 to 4 nM). Aldosterone infusion decreased plasma K+ concentration compared with untreated control rats. Cotreatment with spironolactone completely blocked the aldosterone-induced decrease in plasma K+. Immunoblotting and immunohistochemistry showed increased protein abundance of Na-K-ATPase α1-subunit and NCC in the kidney cortex, in response to aldosterone infusion that was blocked by spironolactone. In contrast, aldosterone-induced redistribution of ENaC subunits from the cytoplasm to the apical plasma membrane domain in CNT and CCD was unaffected by spironolactone. Immunoblotting of αENaC showed increased protein abundance in aldosterone-infused rats that was not blocked by spironolactone treatment. To exclude possible glucocorticoid receptor (GR)-mediated effects of aldosterone, we treated aldosterone-infused rats with both spironolactone and the GR antagonist RU486. Combined MR and GR blockade prevented neither ENaC trafficking nor the upregulation of αENaC protein abundance in aldosterone-infused rats. We provide new evidence for ENaC trafficking occurring independent of MR and GR activation in aldosterone-infused rats.

Original languageEnglish
Pages (from-to)F382-F394
JournalAmerican Journal of Physiology - Renal Physiology
Volume292
Issue number1
DOIs
StatePublished - Jan 2007

Keywords

  • Epithelial sodium channel
  • Mineralocorticoid receptor

Fingerprint

Dive into the research topics of 'Maintained ENaC trafficking in aldosterone-infused rats during mineralocorticoid and glucocorticoid receptor blockade'. Together they form a unique fingerprint.

Cite this