Abstract
Typically, archers prepare two sets of bows for competitions in case of bow breakage, but if the limbs of the bow break during a match, archers can become psychologically disadvantaged, leading to potentially fatal consequences. Archers are very sensitive to the durability and vibration of their bows. While the vibration-damping properties of Bakelite® stabilizer are excellent, its low density and somewhat lower strength and durability are disadvantages. As a solution, we used carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) for the archery limb with stabilizer, commonly used for the limbs of the bow, to manufacture the limb. The stabilizer was reverse-engineered from the Bakelite® product and manufactured using glass fiber-reinforced plastic in the same shape as the existing product. Analyzing the vibration-damping effect and researching ways to reduce the vibration that occurs during shooting through 3D modeling and simulation, it was possible to evaluate the characteristics and the effect of reducing the limb’s vibration by manufacturing archery bows and limbs using carbon fiber- and glass fiber-reinforced composites. The objective of this study was to manufacture archery bows using CFRP and GFRP, and to assess their characteristics as well as their effectiveness at reducing limb vibration. Through testing, the limb and stabilizer that were produced were determined to not fall behind the abilities of the bows currently used by athletes, and they also exhibited a noticeable reduction in vibrations.
Original language | English |
---|---|
Article number | 4048 |
Journal | Materials |
Volume | 16 |
Issue number | 11 |
DOIs | |
State | Published - Jun 2023 |
Keywords
- archery bow
- carbon fiber-reinforced polymer
- co-curing
- glass fiber-reinforced polymer
- limb
- stabilizer
- vibration-damping effect