Mechanical Properties of Glide Path Preparation Instruments with Different Pitch Lengths

Dana Al Raeesi, Sang Won Kwak, Jung Hong Ha, Sameh Sulaiman, Rashid El Abed, Hyeon Cheol Kim

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Introduction: This study compared the effects of pitch length on the torsional resistance and cyclic fatigue resistance of glide path preparation instruments. Methods: G-File (G1 and G2; Micro-Mega, Besançon, France) and new generation G-File (NG1 and NG2, Micro-Mega) instruments were compared to evaluate the effects of the shorter pitch of the latter (25% shorter than G-File). G1 and NG1 have a #12 tip size, whereas G2 and NG2 have a #17 tip size. All the files have the same taper of 3%. For comparing the torsional resistances (n = 15), the file was fixed at 4 mm from the tip, and the clockwise rotation at a constant rotational speed of 2 rpm was adjusted until the file fractured. The maximum torsional load and distortion angle at fracture were recorded. For comparing the cyclic fatigue resistances (n = 15), the files were freely rotated in a simulated canal (radius, 3 mm; curvature, 90°) at a speed of 300 rpm in a dynamic mode. When the file fractured, the time elapsed was recorded using a chronometer. The number of cycles to failure was calculated by multiplying the total time to failure by the rotation rate. Fractured fragments were examined under the scanning electron microscope. Results: The NG2 instruments had significantly higher fatigue resistance and torsional strength than the G2 instruments (P < .05) and showed approximately the same fatigue resistance as the G1. Scanning electron microscopic examinations revealed the typical appearances of 2 failure modes. Conclusions: A shorter pitch design increased cyclic fatigue resistance and torsional strength of the glide path instruments.

Original languageEnglish
Pages (from-to)864-868
Number of pages5
JournalJournal of Endodontics
Volume44
Issue number5
DOIs
StatePublished - May 2018

Keywords

  • Cyclic fatigue
  • glide-path
  • nickel-titanium rotary instrument
  • pitch
  • torsional resistance

Fingerprint

Dive into the research topics of 'Mechanical Properties of Glide Path Preparation Instruments with Different Pitch Lengths'. Together they form a unique fingerprint.

Cite this