Abstract
The authors develop a mechanically robust silver nanowires (AgNWs) electrode platform for use in flexible and stretchable triboelectric nanogenerators (TENGs). The embedding of an AgNWs network into a photocurable or thermocurable polymeric matrix dramatically enhances the mechanical robustness of the flexible and stretchable TENG electrodes while maintaining a highly efficient triboelectric performance. The AgNWs/polymeric matrix electrode is fabricated in four steps: (i) the AgNWs networks are formed on a hydrophobic glass substrate; (ii) a laminating photocurable or thermocurable prepolymer film is applied to the developed AgNWs network; (iii) the polymeric matrix is crosslinked by UV exposure or thermal treatment; and (iv) the AgNWs-embedded polymeric matrix is delaminated from the glass substrate. The AgNWs-embedded polymeric matrix electrodes with four different sheet resistances, controlled by varying the AgNWs network deposition density, are deployed in TENG devices. The authors find that the potential difference between the two contact surfaces of the AgNWs network-embedded polymer matrix electrodes and the nylon (or perfluoroalkoxy alkane) governs the output triboelectric performances of the devices, rather than the sheet resistance. Both Kelvin probe force microscopy and numerical simulations strongly support these observations.
Original language | English |
---|---|
Pages (from-to) | 7717-7724 |
Number of pages | 8 |
Journal | Advanced Functional Materials |
Volume | 26 |
Issue number | 42 |
DOIs | |
State | Published - 8 Nov 2016 |
Keywords
- sheet resistance
- silver nanowires
- triboelectric nanogenerators
- triboelectric potential