TY - JOUR
T1 - Mechanistic study on lowering the sensitivity of positive atmospheric pressure photoionization mass spectrometric analyses
T2 - Size-dependent reactivity of solvent clusters
AU - Ahmed, Arif
AU - Choi, Cheol Ho
AU - Kim, Sunghwan
N1 - Publisher Copyright:
Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
PY - 2015/11/15
Y1 - 2015/11/15
N2 - Rationale Understanding the mechanism of atmospheric pressure photoionization (APPI) is important for studies employing APPI liquid chromatography/mass spectrometry (LC/MS). In this study, the APPI mechanism for polyaromatic hydrocarbon (PAH) compounds dissolved in toluene and methanol or water mixture was investigated by use of MS analysis and quantum mechanical simulation. In particular, four different mechanisms that could contribute to the signal reduction were considered based on a combination of MS data and quantum mechanical calculations. Methods The APPI mechanism is clarified by combining MS data and density functional theory (DFT) calculations. To obtain MS data, a positive-mode (+) APPI Q Exactive Orbitrap mass spectrometer was used to analyze each solution. DFT calculations were performed using the general atomic and molecular electronic structure system (GAMESS). Results The experimental results indicated that methanol significantly reduced the signal in (+) APPI, but no significative signal reduction was observed when water was used as a co-solvent with toluene. The signal reduction is more significant especially for molecular ions than for protonated ions. Therefore, important information about the mechanism of methanol-induced signal reduction in (+) APPI-MS can be gained due its negative impact on APPI efficiency. Conclusions The size-dependent reactivity of methanol clusters ((CH3OH)n, n1-8) is an important factor in determining the sensitivity of (+) APPI-MS analyses. Clusters can compete with toluene radical ions for electrons. The reactivity increases as the sizes of the methanol clusters increase and this effect can be caused by the size-dependent ionization energy of the solvent clusters. The resulting increase in cluster reactivity explains the flow rate and temperature-dependent signal reduction observed in the analytes. Based on the results presented here, minimizing the sizes of methanol clusters can improve the sensitivity of LC/(+)-APPI-MS.
AB - Rationale Understanding the mechanism of atmospheric pressure photoionization (APPI) is important for studies employing APPI liquid chromatography/mass spectrometry (LC/MS). In this study, the APPI mechanism for polyaromatic hydrocarbon (PAH) compounds dissolved in toluene and methanol or water mixture was investigated by use of MS analysis and quantum mechanical simulation. In particular, four different mechanisms that could contribute to the signal reduction were considered based on a combination of MS data and quantum mechanical calculations. Methods The APPI mechanism is clarified by combining MS data and density functional theory (DFT) calculations. To obtain MS data, a positive-mode (+) APPI Q Exactive Orbitrap mass spectrometer was used to analyze each solution. DFT calculations were performed using the general atomic and molecular electronic structure system (GAMESS). Results The experimental results indicated that methanol significantly reduced the signal in (+) APPI, but no significative signal reduction was observed when water was used as a co-solvent with toluene. The signal reduction is more significant especially for molecular ions than for protonated ions. Therefore, important information about the mechanism of methanol-induced signal reduction in (+) APPI-MS can be gained due its negative impact on APPI efficiency. Conclusions The size-dependent reactivity of methanol clusters ((CH3OH)n, n1-8) is an important factor in determining the sensitivity of (+) APPI-MS analyses. Clusters can compete with toluene radical ions for electrons. The reactivity increases as the sizes of the methanol clusters increase and this effect can be caused by the size-dependent ionization energy of the solvent clusters. The resulting increase in cluster reactivity explains the flow rate and temperature-dependent signal reduction observed in the analytes. Based on the results presented here, minimizing the sizes of methanol clusters can improve the sensitivity of LC/(+)-APPI-MS.
UR - http://www.scopus.com/inward/record.url?scp=84943273425&partnerID=8YFLogxK
U2 - 10.1002/rcm.7373
DO - 10.1002/rcm.7373
M3 - Article
AN - SCOPUS:84943273425
SN - 0951-4198
VL - 29
SP - 2095
EP - 2101
JO - Rapid Communications in Mass Spectrometry
JF - Rapid Communications in Mass Spectrometry
IS - 21
ER -