Abstract
In this work, the recurrent neural networks (RNNs) for medical examination data prediction with missing information are proposed. Simple recurrent network (SRN), long short-term memory (LSTM) and gated recurrent unit (GRU) are selected among many variations of RNNs for the missing information imputation while they are also used to predict the future medical examination data. Besides, the missing information imputation based on bidirectional LSTM is also proposed to consider past information as well as the future information in the imputation process, while the traditional RNNs can only consider the past information during the imputation. We implemented medical examination results prediction experiment using the examination database of Koreans. The experimental results showed that the proposed RNNs worked better than the baseline linear regression method. Besides, the bidirectional LSTM performed best for missing information imputation.
Original language | English |
---|---|
Pages (from-to) | 202-220 |
Number of pages | 19 |
Journal | International Journal of Data Mining and Bioinformatics |
Volume | 19 |
Issue number | 3 |
DOIs | |
State | Published - 2017 |
Keywords
- Bidirectional LSTM
- Gated recurrent unit
- Long short-term memory
- Medical examination data prediction
- Recurrent neural network