Abstract
Two-dimensional metal carbides and nitrides (MXenes) have attracted increasing attention for application in water/wastewater treatment. The functionalization of MXenes to increase their stability while demonstrating high pollutant removal can facilitate sustainable water/wastewater treatment processes. In this study, the highly stable magnetic titanium carbide (Ti3C2Tx) MXene nanocomposite (MGMX nanocomposite) was successfully synthesized through a facile hydrothermal approach and was tested for aqueous-phase adsorptive removal of mercuric ions. The synthesized MGMX nanocomposite was studied using characteristic analyses, showing high stability as revealed by zeta-potential analysis and dynamic light-scattering technique. The MGMX nanocomposite presented excellent Hg(II) removal in a wide range of pH conditions, and an exceptional maximum experimental Hg(II) uptake capacity of 1128.41 mg g−1 was observed. The adsorption behavior was investigated using the Redlich-Peterson adsorption isotherm, pseudo second-order kinetics, and thermodynamics models. In the adsorption/desorption investigation, the MGMX nanocomposite was reusable for up to five cycles of adsorption/desorption. The stability, hydrophilic nature, available adsorptive surfaces, and easy separation after reaction make the MGMX nanocomposite an efficient sorbent for the removal of toxic Hg(II) for water purification.
Original language | English |
---|---|
Pages (from-to) | 811-818 |
Number of pages | 8 |
Journal | Journal of Hazardous Materials |
Volume | 344 |
DOIs | |
State | Published - 15 Feb 2018 |
Keywords
- Magnetic MXene
- Mercury remediation
- TiCT
- Water purification