TY - JOUR
T1 - Metabolism of diterpenoids derived from the bark of cinnamomum cassia in human liver microsomes
AU - Choi, Su Min
AU - Pham, Van Cong
AU - Lee, Sangkyu
AU - Kim, Jeong Ah
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8
Y1 - 2021/8
N2 - Cinnamomum cassia L. is used as a spice and flavoring agent as well as a traditional medicine worldwide. Diterpenoids, a class of compounds present in C. cassia, have various pharmacological effects, such as anti-inflammatory, antitumor, and antibacterial activities; however, there are insuffi-cient studies on the metabolism of diterpenoids. In this study, the metabolism of seven diterpenoids, namely, anhydrocinnzeylanol, anhydrocinnzeylanine (AHC), cinncassiol A, cinncassiol B, cinnzey-lanol, cinnzeylanone, and cinnzeylanine, obtained from the bark of C. cassia was studied in human liver microsomes (HLMs). All studied diterpenoids, except for AHC, exhibited strong metabolic stability; however, AHC was rapidly metabolized to 3% in HLMs in the presence of β-NADPH. Using a high-resolution quadrupole-orbitrap mass spectrometer, 20 metabolites were identified as dehydrogenated metabolites (M1–M3), dehydrogenated and oxidated metabolites (M4–M10), mono-oxidated metabolites (M11–M13), or dioxidated metabolites (M14–M20). In addition, CYP isoforms involved in AHC metabolism were determined by profiling metabolites produced after incubation in 11 recombinant cDNA-expressed CYP isoforms. Thus, the diterpenoid compound AHC was identified in a metabolic pathway involving CYP3A4 in HLMs.
AB - Cinnamomum cassia L. is used as a spice and flavoring agent as well as a traditional medicine worldwide. Diterpenoids, a class of compounds present in C. cassia, have various pharmacological effects, such as anti-inflammatory, antitumor, and antibacterial activities; however, there are insuffi-cient studies on the metabolism of diterpenoids. In this study, the metabolism of seven diterpenoids, namely, anhydrocinnzeylanol, anhydrocinnzeylanine (AHC), cinncassiol A, cinncassiol B, cinnzey-lanol, cinnzeylanone, and cinnzeylanine, obtained from the bark of C. cassia was studied in human liver microsomes (HLMs). All studied diterpenoids, except for AHC, exhibited strong metabolic stability; however, AHC was rapidly metabolized to 3% in HLMs in the presence of β-NADPH. Using a high-resolution quadrupole-orbitrap mass spectrometer, 20 metabolites were identified as dehydrogenated metabolites (M1–M3), dehydrogenated and oxidated metabolites (M4–M10), mono-oxidated metabolites (M11–M13), or dioxidated metabolites (M14–M20). In addition, CYP isoforms involved in AHC metabolism were determined by profiling metabolites produced after incubation in 11 recombinant cDNA-expressed CYP isoforms. Thus, the diterpenoid compound AHC was identified in a metabolic pathway involving CYP3A4 in HLMs.
KW - Anhydrocinnzeylanine
KW - CYPs
KW - Diterpenoids
KW - Human liver microsomes
KW - Metabolism
UR - http://www.scopus.com/inward/record.url?scp=85114085947&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics13081316
DO - 10.3390/pharmaceutics13081316
M3 - Article
AN - SCOPUS:85114085947
SN - 1999-4923
VL - 13
JO - Pharmaceutics
JF - Pharmaceutics
IS - 8
M1 - 1316
ER -