TY - JOUR
T1 - Metabolite analysis of 14C-labeled chloromethylisothiazolinone/methylisothiazolinone for toxicological consideration of inhaled isothiazolinone biocides in lungs
AU - Park, Jung Eun
AU - Ryu, Seung Hun
AU - Ito, Satoshi
AU - Shin, Hyunil
AU - Kim, Young Hee
AU - Jeon, Jongho
N1 - Publisher Copyright:
© 2024
PY - 2024/8
Y1 - 2024/8
N2 - 5-Chloro-2-methyl-4-isothiazolin-3-one (CMIT) and 2-methyl-4-isothiazolin-3-one (MIT) used as preservatives in various products, including humidifier disinfectants, presents substantial health hazards. This research delves into the toxicological assessments of CMIT/MIT in the respiratory system using animal models. Through the synthesis of radiolabeled [14C]CMIT and [14C]MIT, we investigated the biological uptake and in vivo behaviors of CMIT/MIT in the respiratory tissues following intratracheal exposure. Quantitative whole-body autoradiography (QWBA) revealed significant persistence of CMIT/MIT in lung tissue. In addition, radio high-performance liquid chromatography (radio-HPLC) with tandem mass spectrometry (LC-MS/MS) was employed for metabolite profiling and identification. Notably, around 28% of the radiolabel was retained in tissue after the extraction step, suggesting covalent binding of CMIT/MIT and their metabolites with pulmonary biomolecules. This observation demonstrates the propensity of the electrophilic isothiazolinone ring in CMIT/MIT to undergo chemical interactions with biothiols in proteins and enzymes, fostering irreversible alterations of biomolecules. Such accumulations of transformations could result in direct toxicity at both cellular and organ levels. Additionally, the detection of metabolites, including a MIT dimer conjugated with glutathione (GSH), as analyzed by mass spectrometry indicates the possible reduction of cellular GSH levels and subsequent oxidative stress. This investigation offers an in-depth insight into the toxic mechanisms of CMIT/MIT, underlying their capability to engage in complex formations with biomacromolecules and induce pronounced respiratory toxicity. These results highlight the imperative for stringent safety assessments of these chemicals, advocating for improved public health and safety measures in the use of chemicals.
AB - 5-Chloro-2-methyl-4-isothiazolin-3-one (CMIT) and 2-methyl-4-isothiazolin-3-one (MIT) used as preservatives in various products, including humidifier disinfectants, presents substantial health hazards. This research delves into the toxicological assessments of CMIT/MIT in the respiratory system using animal models. Through the synthesis of radiolabeled [14C]CMIT and [14C]MIT, we investigated the biological uptake and in vivo behaviors of CMIT/MIT in the respiratory tissues following intratracheal exposure. Quantitative whole-body autoradiography (QWBA) revealed significant persistence of CMIT/MIT in lung tissue. In addition, radio high-performance liquid chromatography (radio-HPLC) with tandem mass spectrometry (LC-MS/MS) was employed for metabolite profiling and identification. Notably, around 28% of the radiolabel was retained in tissue after the extraction step, suggesting covalent binding of CMIT/MIT and their metabolites with pulmonary biomolecules. This observation demonstrates the propensity of the electrophilic isothiazolinone ring in CMIT/MIT to undergo chemical interactions with biothiols in proteins and enzymes, fostering irreversible alterations of biomolecules. Such accumulations of transformations could result in direct toxicity at both cellular and organ levels. Additionally, the detection of metabolites, including a MIT dimer conjugated with glutathione (GSH), as analyzed by mass spectrometry indicates the possible reduction of cellular GSH levels and subsequent oxidative stress. This investigation offers an in-depth insight into the toxic mechanisms of CMIT/MIT, underlying their capability to engage in complex formations with biomacromolecules and induce pronounced respiratory toxicity. These results highlight the imperative for stringent safety assessments of these chemicals, advocating for improved public health and safety measures in the use of chemicals.
KW - Chloromethylisothiazolinone
KW - Inhalation toxicity
KW - Metabolite
KW - Methylisothiazolinone
KW - Radiotracers
UR - http://www.scopus.com/inward/record.url?scp=85196502257&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2024.142666
DO - 10.1016/j.chemosphere.2024.142666
M3 - Article
C2 - 38908450
AN - SCOPUS:85196502257
SN - 0045-6535
VL - 362
JO - Chemosphere
JF - Chemosphere
M1 - 142666
ER -