TY - GEN
T1 - Metamorphic edge processor simulation framework using flexible runtime partial replacement of software-embedded verilog RTL models
AU - Kwon, Jisu
AU - Oh, Sejong
AU - Park, Daejin
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Iterative register-transfer level (RTL) simulation is essential for the edge processor design, but the RTL simulation speed is significantly slower in a system where various RTL models are complicatedly integrated. In this paper, we propose a novel metamorphic edge processor simulation framework that partitions the software part and virtualizes it in the system emulator to eject from full RTL simulation. The system emulator, which is written in a high-level language, and the Verilog simulation have different abstraction levels, thus the Verilog procedural interface (VPI) module is plugged into the Verilog simulator to connect with the virtual layer interface. In the system emulator, a Verilog RTL simulation session corresponding to a specific parameter set can be dynamically loaded at runtime to provide metamorphism by flexible partial parameter-driven RTL model replacement. We applied the proposed framework to finite impulse response (FIR) filter, and it is successfully demonstrated and achieved simulation speedup for given parameters.
AB - Iterative register-transfer level (RTL) simulation is essential for the edge processor design, but the RTL simulation speed is significantly slower in a system where various RTL models are complicatedly integrated. In this paper, we propose a novel metamorphic edge processor simulation framework that partitions the software part and virtualizes it in the system emulator to eject from full RTL simulation. The system emulator, which is written in a high-level language, and the Verilog simulation have different abstraction levels, thus the Verilog procedural interface (VPI) module is plugged into the Verilog simulator to connect with the virtual layer interface. In the system emulator, a Verilog RTL simulation session corresponding to a specific parameter set can be dynamically loaded at runtime to provide metamorphism by flexible partial parameter-driven RTL model replacement. We applied the proposed framework to finite impulse response (FIR) filter, and it is successfully demonstrated and achieved simulation speedup for given parameters.
KW - Metamorphic processor simulation
KW - Partial replacement
KW - System emulation
KW - Verilog RTL
UR - http://www.scopus.com/inward/record.url?scp=85109010507&partnerID=8YFLogxK
U2 - 10.1109/ISCAS51556.2021.9401354
DO - 10.1109/ISCAS51556.2021.9401354
M3 - Conference contribution
AN - SCOPUS:85109010507
T3 - Proceedings - IEEE International Symposium on Circuits and Systems
BT - 2021 IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021
Y2 - 22 May 2021 through 28 May 2021
ER -