TY - JOUR
T1 - Methyl jasmonate-induced senescence results in alterations in the status of chlorophyll precursors and enzymatic antioxidants in rice plants
AU - Kim, So Jin
AU - Tran, Bao Quoc
AU - Jung, Sunyo
N1 - Publisher Copyright:
© 2023 Elsevier Inc.
PY - 2023/9/3
Y1 - 2023/9/3
N2 - We examined the control of chlorophyll biosynthesis and protective mechanisms during leaf senescence induced by methyl jasmonate (MeJA). After MeJA treatment, rice plants displayed evidence of great oxidative stress regarding senescence symptoms, disruption of membrane integrity, H2O2 production, and decreased chlorophyll content and photosynthetic efficiency. After 6 h of MeJA treatment, plants greatly decreased not only their levels of chlorophyll precursors, including protoporphyrin IX (Proto IX), Mg-Proto IX, Mg-Proto IX methylester, and protochlorophyllide, but also the expression levels of the chlorophyll biosynthetic genes CHLD, CHLH, CHLI, and PORB, with the greatest decreases at 78 h. MeJA-treated plants showed a noticeable degradation of light-harvesting chlorophyll-binding proteins (LHCB) at 78 h after MeJA treatment but began to downregulate expression of LHCB at 6 h. Photoprotection, as indicated by nonphotochemical quenching, slightly increased only at 6 h after MeJA treatment. In parallel to the increased activities of superoxide dismutase, catalase (CAT), ascorbate peroxidase (APX), and peroxidase, MeJA-treated plants responded to senescence by markedly upregulating the expression of APX and CAT. Our study demonstrates that rice plants developed protective mechanisms for mitigating oxidative stress by scavenging phototoxic chlorophyll precursors and activating enzymatic antioxidant responses during MeJA-induced senescence.
AB - We examined the control of chlorophyll biosynthesis and protective mechanisms during leaf senescence induced by methyl jasmonate (MeJA). After MeJA treatment, rice plants displayed evidence of great oxidative stress regarding senescence symptoms, disruption of membrane integrity, H2O2 production, and decreased chlorophyll content and photosynthetic efficiency. After 6 h of MeJA treatment, plants greatly decreased not only their levels of chlorophyll precursors, including protoporphyrin IX (Proto IX), Mg-Proto IX, Mg-Proto IX methylester, and protochlorophyllide, but also the expression levels of the chlorophyll biosynthetic genes CHLD, CHLH, CHLI, and PORB, with the greatest decreases at 78 h. MeJA-treated plants showed a noticeable degradation of light-harvesting chlorophyll-binding proteins (LHCB) at 78 h after MeJA treatment but began to downregulate expression of LHCB at 6 h. Photoprotection, as indicated by nonphotochemical quenching, slightly increased only at 6 h after MeJA treatment. In parallel to the increased activities of superoxide dismutase, catalase (CAT), ascorbate peroxidase (APX), and peroxidase, MeJA-treated plants responded to senescence by markedly upregulating the expression of APX and CAT. Our study demonstrates that rice plants developed protective mechanisms for mitigating oxidative stress by scavenging phototoxic chlorophyll precursors and activating enzymatic antioxidant responses during MeJA-induced senescence.
KW - Chlorophyll precursor
KW - Enzymatic antioxidant
KW - Methyl jasmonate
KW - Photosystem II
KW - Senescence
UR - http://www.scopus.com/inward/record.url?scp=85161006134&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2023.06.006
DO - 10.1016/j.bbrc.2023.06.006
M3 - Article
C2 - 37295354
AN - SCOPUS:85161006134
SN - 0006-291X
VL - 671
SP - 38
EP - 45
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
ER -