Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice1[W][OA]

Eun Hye Kim, Youn Shic Kim, Su Hyun Park, Yeon Jong Koo, Yang Do Choi, Yong Yoon Chung, In Jung Lee, Ju Kon Kim

Research output: Contribution to journalArticlepeer-review

222 Scopus citations

Abstract

Jasmonic acid (JA) is involved in plant development and the defense response. Transgenic overexpression of the Arabidopsis (Arabidopsis thaliana) jasmonic acid carboxyl methyltransferase gene (AtJMT) linked to the Ubi1 promoter increased levels of methyl jasmonate (MeJA) by 6-fold in young panicles. Grain yield was greatly reduced in Ubi1:AtJMT plants due to a lower numbers of spikelets and lower filling rates than were observed for nontransgenic (NT) controls. Ubi1:AtJMT plants had altered numbers of spikelet organs, including the lemma/palea, lodicule, anther, and pistil. The loss of grain yield and alteration in spikelet organ numbers were reproduced by treating NT plants with exogenous MeJA, indicating that increased levels of MeJA in Ubi1:AtJMT panicles inhibited spikelet development. Interestingly, MeJA levels were increased by 19-fold in young NT panicles upon exposure to drought conditions, resulting in a loss of grain yield that was similar to that observed in Ubi1:AtJMT plants. Levels of abscisic acid (ABA) were increased by 1.9- and 1.4-fold in Ubi1:AtJMT and drought-treated NT panicles, respectively. The ABA increase in Ubi1:AtJMT panicles grown in nondrought conditions suggests that MeJA, rather than drought stress, induces ABA biosynthesis under drought conditions. Using microarray and quantitative polymerase chain reaction analyses, we identified seven genes that were regulated in both Ubi1:AtJMT and drought-treated NT panicles. Two genes, OsJMT1 and OsSDR (for short-chain alcohol dehydrogenase), are involved in MeJA and ABA biosynthesis, respectively, in rice (Oryza sativa). Overall, our results suggest that plants produce MeJA during drought stress, which in turn stimulates the production of ABA, together leading to a loss of grain yield.

Original languageEnglish
Pages (from-to)1751-1760
Number of pages10
JournalPlant Physiology
Volume149
Issue number4
DOIs
StatePublished - Apr 2009

Fingerprint

Dive into the research topics of 'Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice1[W][OA]'. Together they form a unique fingerprint.

Cite this