Abstract
Medicinal herbs comprise of heavy microbial contaminations. This study aimed to assess microbial hazards including foodborne pathogens in 20 commercial medicinal herbs, Cnidii Rhizoma (C1–C10) and Alismatis Rhizoma (T1–T10) as well as to evaluate irradiation effects of E-beam on microbial load and detection chracteristics. Four samples (C5, C10, T1, T8) from both herbs with higher microbial load were selected for evaluating the irradiation effect of E-beam (up to 10 kGy) on microbial load and radiation-induced changes in detection markers by standard methods (Codex, Korean Food Code), such as direct epifluorescent filter technique/aerobic plate count (DEFT/APC), photostimulated luminescence (PSL), thermoluminescence (TL), and electron spin resonance (ESR). DEFT/APC revealed non-evidence of pre-sterilization of all samples. PSL differentiated irradiated samples (1, 5, and 10 kGy) of both herbs from non-irradiated (control: 0 kGy). Both TL and ESR methods validated PSL screening results by detecting radiation-induced markers from E-beam irradiated medicinal herbs.
Original language | English |
---|---|
Pages (from-to) | 705-715 |
Number of pages | 11 |
Journal | Food Science and Biotechnology |
Volume | 29 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2020 |
Keywords
- DEFT/APC
- ESR
- Luminescence
- Medicinal herb
- Microbial load