Abstract
Electrode modification is crucial in improving the power density and bioelectrochemical performance of a microbial fuel cell (MFC). The conventional carbon felt (CF) surface was modified as an anode in this study to examine an emerging class of materials known as covalent organic framework (COF). In a three-electrode system, the performance of the modified anode (TpPa-1@CF) was evaluated using various physical and bioelectrochemical techniques, demonstrating superior bioelectrochemical activity (cyclic voltammetry), reduced electrode resistance (electrochemical spectroscopy), and excellent electrode stability (chronoamperometry). With a 4.3 and 12.7-fold improvement in power (1069 mW/m2) and current (1954 mA/m2) density and steady MFC performance as compared to the uncoated electrode throughout five MFC cycles, TpPa-1@CF demonstrated better bioelectrochemical activity. Furthermore, the rough electrode surface area and numerous catalytically active sites of TpPa-1@CF promoted the microbial growth/adhesion along with substrate fluxes yielding the selective enrichment of Proteobacteria and Bacteroidetes (electricity-producing phyla). These results indicated that TpPa-1@CF is a promising anode material for several bioelectrochemical applications.
Original language | English |
---|---|
Pages (from-to) | 17003-17014 |
Number of pages | 12 |
Journal | International Journal of Energy Research |
Volume | 46 |
Issue number | 12 |
DOIs | |
State | Published - 10 Oct 2022 |
Keywords
- TpPa-1
- anode modification
- covalent organic framework
- microbial fuel cell
- power density