Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo

Wookbong Kwon, Daehwan Kim, Hee Yeon Kim, Sang Won Jeong, Se Guen Lee, Hyun Chul Kim, Young Jae Lee, Mi Kyung Kwon, Jun Seong Hwang, Jee Eun Han, Jin Kyu Park, Sung Jun Lee, Seong Kyoon Choi

Research output: Contribution to journalArticlepeer-review

88 Scopus citations

Abstract

The remarkable increase in plastic usage and widespread microplastic (MP) pollution has emerged as a substantial concern today. Many recent studies have revealed MPs as potentially hazardous substances in mammals. Despite several reports on the impact of small MPs in the brain and behaviors in aquatic animals, it is still unclear how small MPs affect the brain and its underlying cellular physiology in terrestrial animals. In this study, we investigated the accumulation of polystyrene MPs (PS-MPs) in mouse brain after oral treatment using three types of fluorescent PS-MPs of different sizes (0.2,2 and 10 μm). We found that PS-MPs were deposited in microglial cells of the brain. Following differential treatment of PS-MPs in human microglial HMC-3 cells, we identified changes in cellular morphology, immune responses, and microglial apoptosis induced by phagocytosis of 0.2 and 2 μm PS-MPs. By analyzing the PS-MP-treated HMC-3 cell transcriptome, we showed that PS-MPs treatment altered the expression of clusters of immune response genes, immunoglobulins, and several related microRNAs. In addition, we confirmed alterations in microglial differentiation marker expression with the activation of NF-κB, pro-inflammatory cytokines and apoptotic markers in PS-MP-treated human microglial cells and in mouse brain. Our findings suggest a potential risk of small PS-MPs in microglial immune activation, which leads to microglial apoptosis in murine and human brains.

Original languageEnglish
Article number150817
JournalScience of the Total Environment
Volume807
DOIs
StatePublished - 10 Feb 2022

Keywords

  • Apoptosis
  • Brain
  • Immune response
  • Microglia
  • Mouse
  • Polystyrene microplastics

Fingerprint

Dive into the research topics of 'Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo'. Together they form a unique fingerprint.

Cite this