Abstract
Intercellular adhesion molecule-1 (ICAM-1) in cerebral vascular endothelium induced by ischemic insult triggers leukocyte infiltration and inflammatory reaction. We investigated the mechanism of hypothermic suppression of ICAM-1 in a model of focal cerebral ischemia. Rats underwent 2 hours of middle cerebral artery occlusion and were kept at 37()C or 33()C during occlusion and rewarmed to normal temperature immediately after reperfusion. Under hypothermic condition, robust activation of extracellular signal-regulated kinase-1/2 (ERK1/2) was observed in vascular endothelium of ischemic brain. Hypothermic suppression of ICAM-1 was reversed by ERK1/2 inhibition. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) in ischemic vessel was attenuated by hypothermia. STAT3 inhibitor suppressed ICAM-1 production induced by stroke. ERK1/2 inhibition enhanced phosphorylation and DNA binding activity of STAT3 in hypothermic condition. In this study, we demonstrated that hypothermic suppression of ICAM-1 induction is mediated by enhanced ERK1/2 activation and subsequent attenuation of STAT3 action.
Original language | English |
---|---|
Article number | 846716 |
Journal | Stroke Research and Treatment |
DOIs | |
State | Published - 2011 |