TY - JOUR
T1 - Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper
AU - Miran, Waheed
AU - Jang, Jiseon
AU - Nawaz, Mohsin
AU - Shahzad, Asif
AU - Jeong, Sang Eun
AU - Jeon, Che Ok
AU - Lee, Dae Sung
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017
Y1 - 2017
N2 - Microbial fuel cells (MFCs) have been widely investigated for organic-based waste/substrate conversion to electricity. However, toxic compounds such as heavy metals are ubiquitous in organic waste and wastewater. In this work, a sulfate reducing bacteria (SRB)-enriched anode is used to study the impact of Cu2+ on MFC performance. This study demonstrates that MFC performance is slightly enhanced at concentrations of up to 20 mg/L of Cu2+, owing to the stimulating effect of metals on biological reactions. Cu2+ removal involves the precipitation of metalloids out of the solution, as metal sulfide, after they react with the sulfide produced by SRB. Simultaneous power generation of 224.1 mW/m2 at lactate COD/SO42− mass ratio of 2.0 and Cu2+ of 20 mg/L, and high Cu2+ removal efficiency, at >98%, are demonstrated in the anodic chamber of a dual-chamber MFC. Consistent MFC performance at 20 mg/L of Cu2+ for ten successive cycles shows the excellent reproducibility of this system. In addition, total organic content and sulfate removal efficiencies greater than 85% and 70%, respectively, are achieved up to 20 mg/L of Cu2+ in 48 h batches. However, higher metal concentration and very low pH at <4.0 inhibit the SRB MFC system. Microbial community analysis reveals that Desulfovibrio is the most abundant SRB in anode biofilm at the genus level, at 38.1%. The experimental results demonstrate that biological treatment of low-concentration metal-containing wastewater with SRB in MFCs can be an attractive technique for the bioremediation of this type of medium with simultaneous energy generation.
AB - Microbial fuel cells (MFCs) have been widely investigated for organic-based waste/substrate conversion to electricity. However, toxic compounds such as heavy metals are ubiquitous in organic waste and wastewater. In this work, a sulfate reducing bacteria (SRB)-enriched anode is used to study the impact of Cu2+ on MFC performance. This study demonstrates that MFC performance is slightly enhanced at concentrations of up to 20 mg/L of Cu2+, owing to the stimulating effect of metals on biological reactions. Cu2+ removal involves the precipitation of metalloids out of the solution, as metal sulfide, after they react with the sulfide produced by SRB. Simultaneous power generation of 224.1 mW/m2 at lactate COD/SO42− mass ratio of 2.0 and Cu2+ of 20 mg/L, and high Cu2+ removal efficiency, at >98%, are demonstrated in the anodic chamber of a dual-chamber MFC. Consistent MFC performance at 20 mg/L of Cu2+ for ten successive cycles shows the excellent reproducibility of this system. In addition, total organic content and sulfate removal efficiencies greater than 85% and 70%, respectively, are achieved up to 20 mg/L of Cu2+ in 48 h batches. However, higher metal concentration and very low pH at <4.0 inhibit the SRB MFC system. Microbial community analysis reveals that Desulfovibrio is the most abundant SRB in anode biofilm at the genus level, at 38.1%. The experimental results demonstrate that biological treatment of low-concentration metal-containing wastewater with SRB in MFCs can be an attractive technique for the bioremediation of this type of medium with simultaneous energy generation.
KW - Heavy metals
KW - MFC
KW - Microbial community
KW - Sulfate-reducing bacteria
UR - http://www.scopus.com/inward/record.url?scp=85029508237&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2017.09.048
DO - 10.1016/j.chemosphere.2017.09.048
M3 - Article
C2 - 28934653
AN - SCOPUS:85029508237
SN - 0045-6535
VL - 189
SP - 134
EP - 142
JO - Chemosphere
JF - Chemosphere
ER -