TY - JOUR
T1 - Modeling the Transport of the "new-Horizon" Reduced Graphene Oxide - Metal Oxide Nanohybrids in Water-Saturated Porous Media
AU - Wang, Dengjun
AU - Jin, Yan
AU - Park, Chang Min
AU - Heo, Jiyong
AU - Bai, Xue
AU - Aich, Nirupam
AU - Su, Chunming
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/4/17
Y1 - 2018/4/17
N2 - Little is known about the fate and transport of the "new-horizon" multifunctional nanohybrids in the environment. Saturated sand-packed column experiments (n = 66) were therefore performed to investigate the transport and retention of reduced graphene oxide (RGO) - metal oxide (Fe3O4, TiO2, and ZnO) nanohybrids under environmentally relevant conditions (mono- and divalent electrolytes and natural organic matter). Classical colloid science principles (Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and colloid filtration theory (CFT)) and mathematical models based on the one-dimensional convection-dispersion equation were employed to describe and predict the mobility of RGO-Fe3O4, RGO-TiO2, and RGO-ZnO nanohybrids in porous media. Results indicate that the mobility of the three nanohybrids under varying experimental conditions is overall explainable by DLVO theory and CFT. Numerical simulations suggest that the one-site kinetic retention model (OSKRM) considering both time- and depth-dependent retention accurately approximated the breakthrough curves (BTCs) and retention profiles (RPs) of the nanohybrids concurrently; whereas, others (e.g., two-site retention model) failed to capture the BTCs and/or RPs. This is primarily because blocking BTCs and exponential/hyperexponential/uniform RPs occurred, which is within the framework of OSKRM featuring time- (for kinetic Langmuirian blocking) and depth-dependent (for exponential/hyperexponential/uniform) retention kinetics. Employing fitted parameters (maximum solid-phase retention capacity: Smax = 0.0406-3.06 cm3/g; and first-order attachment rate coefficient: ka = 0.133-20.6 min-1) extracted from the OSKRM and environmentally representative physical variables (flow velocity (0.00441-4.41 cm/min), porosity (0.24-0.54), and grain size (210-810 μm)) as initial input conditions, the long-distance transport scenarios (in 500 cm long sand columns) of the three nanohybrids were predicted via forward simulation. Our findings address the existing knowledge gap regarding the impact of physicochemical factors on the transport of the next-generation, multifunctional RGO - metal oxide nanohybrids in the subsurface.
AB - Little is known about the fate and transport of the "new-horizon" multifunctional nanohybrids in the environment. Saturated sand-packed column experiments (n = 66) were therefore performed to investigate the transport and retention of reduced graphene oxide (RGO) - metal oxide (Fe3O4, TiO2, and ZnO) nanohybrids under environmentally relevant conditions (mono- and divalent electrolytes and natural organic matter). Classical colloid science principles (Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and colloid filtration theory (CFT)) and mathematical models based on the one-dimensional convection-dispersion equation were employed to describe and predict the mobility of RGO-Fe3O4, RGO-TiO2, and RGO-ZnO nanohybrids in porous media. Results indicate that the mobility of the three nanohybrids under varying experimental conditions is overall explainable by DLVO theory and CFT. Numerical simulations suggest that the one-site kinetic retention model (OSKRM) considering both time- and depth-dependent retention accurately approximated the breakthrough curves (BTCs) and retention profiles (RPs) of the nanohybrids concurrently; whereas, others (e.g., two-site retention model) failed to capture the BTCs and/or RPs. This is primarily because blocking BTCs and exponential/hyperexponential/uniform RPs occurred, which is within the framework of OSKRM featuring time- (for kinetic Langmuirian blocking) and depth-dependent (for exponential/hyperexponential/uniform) retention kinetics. Employing fitted parameters (maximum solid-phase retention capacity: Smax = 0.0406-3.06 cm3/g; and first-order attachment rate coefficient: ka = 0.133-20.6 min-1) extracted from the OSKRM and environmentally representative physical variables (flow velocity (0.00441-4.41 cm/min), porosity (0.24-0.54), and grain size (210-810 μm)) as initial input conditions, the long-distance transport scenarios (in 500 cm long sand columns) of the three nanohybrids were predicted via forward simulation. Our findings address the existing knowledge gap regarding the impact of physicochemical factors on the transport of the next-generation, multifunctional RGO - metal oxide nanohybrids in the subsurface.
UR - http://www.scopus.com/inward/record.url?scp=85045577815&partnerID=8YFLogxK
U2 - 10.1021/acs.est.7b06488
DO - 10.1021/acs.est.7b06488
M3 - Article
C2 - 29582656
AN - SCOPUS:85045577815
SN - 0013-936X
VL - 52
SP - 4610
EP - 4622
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 8
ER -