TY - JOUR
T1 - Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis
AU - Kim, Yeong Bin
AU - Yoon, Mi Young
AU - Ha, Jong Su
AU - Seo, Kwang Won
AU - Noh, Eun Bi
AU - Son, Se Hyun
AU - Lee, Young Ju
N1 - Publisher Copyright:
© 2019
PY - 2020/2
Y1 - 2020/2
N2 - Avian pathogenic Escherichia coli (APEC) causes extensive mortality in poultry flocks, leading to extensive economic losses. The aim of this study was to investigate the phenotypic and genotypic characteristics and antimicrobial resistance of recent APEC isolates. Of the 79 APEC isolates, the most predominant serogroup was O78 (16 isolates, 20.3%), followed by O2 (7 isolates, 8.9%) and O53 (7 isolates, 8.9%). Thirty-seven (46.8%) and six (7.6%) of the isolates belonged to phylogenetic groups D and B2, respectively, and presented as virulent extraintestinal E. coli. Among 5 analyzed virulence genes, the highest frequency was observed in hlyF (74 isolates, 93.7%), followed by iutA (72 isolates, 91.9%) gene. The distribution of the iss gene was significantly different between groups A/B1 and B2/D (P < 0.05). All group B2 isolates carried all 5 virulence genes. APEC isolates showed high resistance to ampicillin (83.5%), nalidixic acid (65.8%), tetracycline (64.6%), cephalothin (46.8%), and ciprofloxacin (46.8%). The β-lactamases–encoding genes blaTEM-1 (23 isolates, 29.1%), blaCTX-M-1 (4 isolates, 5.1%), and blaCTX-M-15 (3 isolates, 3.8%); the aminoglycoside-modifying enzyme gene aac(3)-II (4 isolates, 5.1%); and the plasmid-mediated quinolone genes qnrA (10 isolates, 12.7%) and qnrS (2 isolates, 2.5%) were identified in APEC isolates. The tetA (37 isolates, 46.8%) and sul2 (20 isolates, 25.3%) were the most prevalent among tetracycline and sulfonamide resistant isolates, respectively. This study indicates that APEC isolates harbor a variety of virulence and resistance genes; such genes are often associated with plasmids that facilitate their transmission between bacteria and should be continuously monitored to track APEC transmission in poultry farms.
AB - Avian pathogenic Escherichia coli (APEC) causes extensive mortality in poultry flocks, leading to extensive economic losses. The aim of this study was to investigate the phenotypic and genotypic characteristics and antimicrobial resistance of recent APEC isolates. Of the 79 APEC isolates, the most predominant serogroup was O78 (16 isolates, 20.3%), followed by O2 (7 isolates, 8.9%) and O53 (7 isolates, 8.9%). Thirty-seven (46.8%) and six (7.6%) of the isolates belonged to phylogenetic groups D and B2, respectively, and presented as virulent extraintestinal E. coli. Among 5 analyzed virulence genes, the highest frequency was observed in hlyF (74 isolates, 93.7%), followed by iutA (72 isolates, 91.9%) gene. The distribution of the iss gene was significantly different between groups A/B1 and B2/D (P < 0.05). All group B2 isolates carried all 5 virulence genes. APEC isolates showed high resistance to ampicillin (83.5%), nalidixic acid (65.8%), tetracycline (64.6%), cephalothin (46.8%), and ciprofloxacin (46.8%). The β-lactamases–encoding genes blaTEM-1 (23 isolates, 29.1%), blaCTX-M-1 (4 isolates, 5.1%), and blaCTX-M-15 (3 isolates, 3.8%); the aminoglycoside-modifying enzyme gene aac(3)-II (4 isolates, 5.1%); and the plasmid-mediated quinolone genes qnrA (10 isolates, 12.7%) and qnrS (2 isolates, 2.5%) were identified in APEC isolates. The tetA (37 isolates, 46.8%) and sul2 (20 isolates, 25.3%) were the most prevalent among tetracycline and sulfonamide resistant isolates, respectively. This study indicates that APEC isolates harbor a variety of virulence and resistance genes; such genes are often associated with plasmids that facilitate their transmission between bacteria and should be continuously monitored to track APEC transmission in poultry farms.
KW - antimicrobial resistance
KW - avian pathogenic Escherichia coli
KW - broilers
KW - phylogenetic group
UR - http://www.scopus.com/inward/record.url?scp=85078788310&partnerID=8YFLogxK
U2 - 10.1016/j.psj.2019.10.047
DO - 10.1016/j.psj.2019.10.047
M3 - Article
C2 - 32029145
AN - SCOPUS:85078788310
SN - 0032-5791
VL - 99
SP - 1088
EP - 1095
JO - Poultry Science
JF - Poultry Science
IS - 2
ER -