TY - JOUR
T1 - Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction
AU - Trochet, Delphine
AU - Hong, Seok Jong
AU - Lim, Jin Kyu
AU - Brunet, Jean François
AU - Munnich, Arnold
AU - Kim, Kwang Soo
AU - Lyonnet, Stanislas
AU - Goridis, Christo
AU - Amiel, Jeanne
PY - 2005/12/1
Y1 - 2005/12/1
N2 - Heterozygous mutations of the PHOX2B gene account for a broad variety of disorders of the autonomic nervous system, either isolated or combined, including congenital central hypoventilation syndrome (CCHS), tumours of the sympathetic nervous system and Hirschsprung disease. In CCHS, the prevalent mutation is an expansion of a 20-alanine stretch ranging from +5 to +13 alanines, whereas frameshift and missense mutations are found occasionally. To determine the molecular basis of impaired PHOX2B function, we assayed the transactivation and DNA binding properties of wild-type and mutant PHOX2B proteins. Furthermore, we investigated aggregate formation by proteins with polyalanine tract expansions ranging from +5 to +13 alanines using immunofluorescence of transfected cells and gel filtration of in vitro translated proteins. We found that transactivation of the dopamine beta-hydroxylase promoter by PHOX2B proteins with frameshift and missense mutations was abolished or severely curtailed, as was in vitro DNA binding although the proteins localized to the nucleus. The transactivation potential of proteins with polyalanine tract expansions declined with increasing length of the polyalanine stretch, and DNA binding was affected for an expansion of +9 alanines and above. Cytoplasmic aggregation in transfected cells was only observed for the longest expansions, whereas even the short expansion mutants were prone to form multimers in vitro. Such a tendency to protein misfolding could explain loss of transactivation for alanine expansion mutations. However, additional mechanisms such as toxic gain-of-function may play a role in the pathogenic process.
AB - Heterozygous mutations of the PHOX2B gene account for a broad variety of disorders of the autonomic nervous system, either isolated or combined, including congenital central hypoventilation syndrome (CCHS), tumours of the sympathetic nervous system and Hirschsprung disease. In CCHS, the prevalent mutation is an expansion of a 20-alanine stretch ranging from +5 to +13 alanines, whereas frameshift and missense mutations are found occasionally. To determine the molecular basis of impaired PHOX2B function, we assayed the transactivation and DNA binding properties of wild-type and mutant PHOX2B proteins. Furthermore, we investigated aggregate formation by proteins with polyalanine tract expansions ranging from +5 to +13 alanines using immunofluorescence of transfected cells and gel filtration of in vitro translated proteins. We found that transactivation of the dopamine beta-hydroxylase promoter by PHOX2B proteins with frameshift and missense mutations was abolished or severely curtailed, as was in vitro DNA binding although the proteins localized to the nucleus. The transactivation potential of proteins with polyalanine tract expansions declined with increasing length of the polyalanine stretch, and DNA binding was affected for an expansion of +9 alanines and above. Cytoplasmic aggregation in transfected cells was only observed for the longest expansions, whereas even the short expansion mutants were prone to form multimers in vitro. Such a tendency to protein misfolding could explain loss of transactivation for alanine expansion mutations. However, additional mechanisms such as toxic gain-of-function may play a role in the pathogenic process.
UR - http://www.scopus.com/inward/record.url?scp=28744432065&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddi401
DO - 10.1093/hmg/ddi401
M3 - Article
C2 - 16249188
AN - SCOPUS:28744432065
SN - 0964-6906
VL - 14
SP - 3697
EP - 3708
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 23
ER -