TY - JOUR
T1 - Multi-step competitive sorption and desorption of chlorophenols in surfactant modified montmorillonite
AU - Kim, Ji Hoon
AU - Shin, Won Sik
AU - Song, Dong Ik
AU - Sang, June Choi
PY - 2005/9
Y1 - 2005/9
N2 - Single- and bi-solute sorption and desorption of 2,4-dichlorophenol (2,4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) in montmorillonite modified with hexadecyltrimethylammonium (HDTMA) were investigated using multi-step sorption and desorption procedure. Effect of pH on the multi-step sorption and desorption was investigated. As expected by the magnitude of octanol-water partition coefficient, K ow , both sorption and desorption affinity of 2,4,5-TCP was higher than that of 2,4-DCP at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 95% and 99% of 2,4-dichlorophenolate and 2,4,5- trichlophenolate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation in the previous sorption stage. Freundlich model was used to analyze the single-solute sorption and desorption data. No appreciable desorption-resistant (or non-desorbing) fraction was observed in organoclays after several multi-step desorptions. This indicates that sorption of phenols in organoclay mainly occurs via partitioning into the core of the pseudo-organic medium, thereby causing desorption nearly reversible. In bisolute competitive systems, sorption (or desorption) affinity of both chlorophenols was reduced compared to that in its single-solute system due to the competition between the solutes. The ideal adsorbed solution theory (IAST) coupled to the single-solute Freundlich model successfully predicted bisolute multi-step competitive sorption and desorption equilibria.
AB - Single- and bi-solute sorption and desorption of 2,4-dichlorophenol (2,4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) in montmorillonite modified with hexadecyltrimethylammonium (HDTMA) were investigated using multi-step sorption and desorption procedure. Effect of pH on the multi-step sorption and desorption was investigated. As expected by the magnitude of octanol-water partition coefficient, K ow , both sorption and desorption affinity of 2,4,5-TCP was higher than that of 2,4-DCP at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 95% and 99% of 2,4-dichlorophenolate and 2,4,5- trichlophenolate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation in the previous sorption stage. Freundlich model was used to analyze the single-solute sorption and desorption data. No appreciable desorption-resistant (or non-desorbing) fraction was observed in organoclays after several multi-step desorptions. This indicates that sorption of phenols in organoclay mainly occurs via partitioning into the core of the pseudo-organic medium, thereby causing desorption nearly reversible. In bisolute competitive systems, sorption (or desorption) affinity of both chlorophenols was reduced compared to that in its single-solute system due to the competition between the solutes. The ideal adsorbed solution theory (IAST) coupled to the single-solute Freundlich model successfully predicted bisolute multi-step competitive sorption and desorption equilibria.
KW - Chlorophenols
KW - Competition
KW - Desorption
KW - Hexadecyltrimethylammonium
KW - Ideal adsorbed solution theory
KW - Montmorillonite
KW - Organoclay
KW - Sorption
UR - http://www.scopus.com/inward/record.url?scp=24644455456&partnerID=8YFLogxK
U2 - 10.1007/s11270-005-6329-5
DO - 10.1007/s11270-005-6329-5
M3 - Article
AN - SCOPUS:24644455456
SN - 0049-6979
VL - 166
SP - 367
EP - 380
JO - Water, Air, and Soil Pollution
JF - Water, Air, and Soil Pollution
IS - 1-4
ER -